Knowledge Agora



Similar Articles

Title Converting furfural residue wastes to carbon materials for high performance supercapacitor
ID_Doc 13378
Authors Guo, XY; Zhang, XS; Wang, YX; Tian, XD; Qiao, Y
Title Converting furfural residue wastes to carbon materials for high performance supercapacitor
Year 2022
Published Green Energy & Environment, 7, 6
Abstract Sustainable development based on the value-added utilization of furfural residues (FRs) is an effective way to achieve a profitable circular economy. This comprehensive work highlights the potential of FRs as precursor to prepare porous carbons for high performance supercapacitors (SCs). To improve the electrochemical performance of FR-based carbon materials, a facile route based on methanol pretreatment coupled with pre-carbonization and followed KOH activation is proposed. More defects could be obtained after methanol treatment, which is incline to optimize textural structure. The activated methanol treated FR-based carbon materials (AFRMs) possess high specific surface area (1753.5 m(2) g(-1)), large pore volume (0.85 cm(3) g(-1)), interconnected micro/mesoporous structure, which endow the AFRMs with good electrochemical performance in half-cell (326.1 F g(-1) at 0.1 A g(-1), 189.4 F g(-1) at 50 A g(-1) in 6 mol L-1 KOH). The constructed symmetric SCs based on KOH, KOH-K3Fe(CN) 6 and KOH-KI electrolyte deliver energy density up to 8.9, 9.9 and 10.6 Wh kg(-1) with a capacitance retention of over 86% after 10,000 cycles. Furthermore, the self-discharge can be restrained by the addition of K3Fe(CN)(6) and KI in KOH electrolyte. This study provides an effective approach for high-valued utilization of FR waste. (c) 2021 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
PDF

Similar Articles

ID Score Article
8795 Mamani, A; Barreda, D; Sardella, MF; Bavio, M; Blanco, C; González, Z; Santamaría, R Fe-doped biomass-derived activated carbons as sustainable electrode materials in supercapacitors using different electrolytes(2024)
10672 Krishnan, SG; Arulraj, A; Jagadish, P; Khalid, M; Nasrollahzadeh, M; Fen, R; Yang, CC; Hegde, G Pore size matters!-a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials(2023)Critical Reviews In Solid State And Materials Sciences, 48, 1
23425 Jafari, M; Botte, GG Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors(2024)Acs Omega, 9, 11
12159 Alcaraz, L; Adán-Más, A; Arévalo-Cid, P; Montemor, MD; López, FA RETRACTED: Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors (Retracted article. See vol. 11, 2023)(2020)
22301 Venna, S; Sharma, HB; Mandal, D; Reddy, HP; Chowdhury, S; Chandra, A; Dubey, BK Carbon material produced by hydrothermal carbonisation of food waste as an electrode material for supercapacitor application: A circular economy approach(2022)Waste Management & Research, 40.0, 10
10788 Yan, B; Zheng, JJ; Feng, L; Zhang, Q; Zhang, CM; Ding, YC; Han, JQ; Jiang, SH; He, SJ Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials(2023)
8583 Chodankar, NR; Patil, SJ; Hwang, SK; Shinde, PA; Karekar, SV; Raju, GSR; Ranjith, KS; Olabi, AG; Dubal, DP; Huh, YS; Han, YK Refurbished carbon materials from waste supercapacitors as industrial-grade electrodes: Empowering electronic waste(2022)
26987 Samantray, R; Manickavasakam, K; Vivekanand; Pradhan, B; Kandasamy, M; Mishra, SC; Misnon, II; Jose, R Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application(2024)
29878 Adan-Mas, A; Alcaraz, L; Arévalo-Cid, P; López-Gómez, FA; Montemor, F Coffee-derived activated carbon from second biowaste for supercapacitor applications(2021)
26400 Pal, B; Yasin, A; Sunil, V; Sofer, Z; Yang, CC; Jose, R Enhancing the materials circularity: from laboratory waste to electrochemical capacitors(2022)
Scroll