Knowledge Agora



Similar Articles

Title Mining the in-use stock of energy-transition materials for closed-loop e-mobility
ID_Doc 13474
Authors Schuster, V; Ciacci, L; Passarini, F
Title Mining the in-use stock of energy-transition materials for closed-loop e-mobility
Year 2023
Published
Abstract The decarbonization of transportation is essential to achieve a carbon neutral planetary society. However, the turn to electromobility is based on advanced technologies (e.g., lithium-ions batteries) that tied our development to many functional materials with problematic supply. In this study, we apply prospective dynamic material flow analysis to explore the potentials for closing material cycles while meeting a full transition to electric for a set of energy-transition materials (ETMs) including lithium, cobalt, nickel, manganese, and natural graphite. Three demand scenarios are applied to develop trajectories for ETM demand, their in-use stock, and derive the po-tentials to which recycling can substitute for virgin material extraction at the global scale to 2065.Our results estimate that ETM inflow to use could increase between 20 and 50 times by 2065. However, secondary supply will hardly enable the achievement of circularity in material cycles in the next decades so that the supply of ETMs will remain mainly based on primary material extraction. Nevertheless, from 2040 onwards, recycling volumes could meet up to more than 80% of demand and represent a viable alternative to mining. If the ideal scenario is realized, government policies could have the potential for achieving the dual goal of decarbonizing e-mobility and securing sustainable access to ETMs already in the middle of 2050s. However, the combined commitment and efforts across the value chain of policymakers, companies involved in the cycle, and consumers will be needed to fully realize the great potential for circular economy to work for e-mobility.
PDF https://doi.org/10.1016/j.resourpol.2023.104155

Similar Articles

ID Score Article
20529 Watari, T; Nansai, K; Nakajima, K; McLellan, BC; Dominish, E; Giurco, D Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles(2019)Environmental Science & Technology, 53, 20
3795 Hu, ZM; Yu, BY; Daigo, I; Tan, JX; Sun, FH; Zhang, ST Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target(2024)
10515 Dunn, J; Slattery, M; Kendall, A; Ambrose, H; Shen, SH Circularity of Lithium-Ion Battery Materials in Electric Vehicles(2021)Environmental Science & Technology, 55, 8
77225 Seck, GS; Hache, E; Barnet, C Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world(2022)
6735 Neidhardt, M; Mas-Peiro, J; Schulz-Moenninghoff, M; Pou, JO; Gonzalez-Olmos, R; Kwade, A; Schmuelling, B Forecasting the Global Battery Material Flow: Analyzing the Break-Even Points at Which Secondary Battery Raw Materials Can Substitute Primary Materials in the Battery Production(2022)Applied Sciences-Basel, 12, 9
28142 Baars, J; Domenech, T; Bleischwitz, R; Melin, HE; Heidrich, O Circular economy strategies for electric vehicle batteries reduce reliance on raw materials(2021)Nature Sustainability, 4.0, 1
22785 Collis, GE; Dai, Q; Loh, JSC; Lipson, A; Gaines, L; Zhao, YY; Spangenberger, J Closing the Loop on LIB Waste: A Comparison of the Current Challenges and Opportunities for the U.S. and Australia towards a Sustainable Energy Future(2023)Recycling, 8.0, 5
25192 Lallana, M; Torrubia, J; Valero, A Metals for energy & digital transition in Spain: Demand, recycling and sufficiency alternatives(2024)
1999 Mulvaney, D; Richards, RM; Bazilian, MD; Hensley, E; Clough, G; Sridhar, S Progress towards a circular economy in materials to decarbonize electricity and mobility(2021)
6034 Pratap, B; Mohan, TVK; Amit, RK; Venugopal, S Evaluating circular economy strategies for raw material recovery from end-of-life lithium-ion batteries: A system dynamics model(2024)
Scroll