Knowledge Agora



Similar Articles

Title Sludge-derived biochar: Physicochemical characteristics for environmental remediation
ID_Doc 13509
Authors Mayilswamy, N; Nighojkar, A; Edirisinghe, M; Sundaram, S; Kandasubramanian, B
Title Sludge-derived biochar: Physicochemical characteristics for environmental remediation
Year 2023
Published Applied Physics Reviews, 10, 3
Abstract The global production of fecal wastes is envisioned to reach a very high tonnage by 2030. Perilous handling and consequential exposition of human and animal fecal matter are inextricably linked with stunted growth, enteric diseases, inadequate cognitive skills, and zoonoses. Sludge treatment from sewage and water treatment processes accounts for a very high proportion of overall operational expenditure. Straightforward carbonization of sludges to generate biochar adsorbents or catalysts fosters a circular economy, curtailing sludge processing outlay. Biochars, carbonaceous substances synthesized via the thermochemical transformation of biomass, possess very high porosity, cation exchange capacity, specific surface area, and active functional sorption sites making them very effective as multifaceted adsorbents, promoting a negative carbon emission technology. By customizing the processing parameters and biomass feedstock, engineered biochars possess discrete physicochemical characteristics that engender greater efficaciousness for adsorbing various contaminants. This review provides explicit insight into the characteristics, environmental impact considerations, and SWOT analysis of different sludges (drinking water, fecal, and raw sewage sludge) and the contemporary biochar production, modification, characterization techniques, and physicochemical characteristics, factors influencing the properties of biochars derived from the aforestated sludges, along with the designing of chemical reactors involved in biochar production. This paper also manifests a state-of-the-art discussion of the utilization of sludge-derived biochars for the eviction of toxic metal ions, organic compounds, microplastics, toxic gases, vermicomposting approaches, and soil amelioration with an emphasis on biochar recyclability, reutilization, and toxicity. The practicability of scaling up biochar generation with multifaceted, application-accustomed functionalities should be explored to aggrandize socio-economic merits.
PDF https://discovery.ucl.ac.uk/10175957/1/031308_1_5.0137651.pdf

Similar Articles

ID Score Article
2917 Khan, R; Shukla, S; Kumar, M; Zuorro, A; Pandey, A Sewage sludge derived biochar and its potential for sustainable environment in circular economy: Advantages and challenges(2023)
30025 Gopinath, A; Divyapriya, G; Srivastava, V; Laiju, AR; Nidheesh, P; Kumar, MS Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment(2021)
3685 Chen, B; Zeng, H; Yang, F; Yang, YF; Qiao, Z; Zhao, XL; Wang, L; Wu, FC Functional biochar as sustainable precursors to boost the anaerobic digestion of waste activated sludge from a circular economy perspective: a review(2024)Biochar, 6, 1
10170 Zhang, YH; Qin, JD; Yi, YL Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications(2021)
6368 Hu, JW; Zhao, L; Luo, JM; Gong, HB; Zhu, NW A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives(2022)
21044 Marzbali, MH; Hakeem, IG; Ngo, T; Balu, R; Jena, MK; Vuppaladadiyam, A; Sharma, A; Choudhury, NR; Batstone, DJ; Shah, KL A critical review on emerging industrial applications of chars from thermal treatment of biosolids(2024)
28847 Bolognesi, S; Bernardi, G; Callegari, A; Dondi, D; Capodaglio, AG Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy(2021)Biomass Conversion And Biorefinery, 11.0, 2
21772 Présiga-López, D; Rubio-Clemente, A; Pérez, JF Use of biochar as an alternative material for the treatment of polluted wastewater(2021)Uis Ingenierias, 20.0, 1
13435 Fdez-Sanromán, A; Pazos, M; Rosales, E; Sanromán, MA Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review(2020)Applied Sciences-Basel, 10, 21
20225 Marcinczyk, M; Ok, YS; Oleszczuk, P From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars(2022)
Scroll