Knowledge Agora



Similar Articles

Title Catalyzed pyrolysis of scrap tires rubber
ID_Doc 13534
Authors Rijo, B; Dias, APS; Wojnicki, L
Title Catalyzed pyrolysis of scrap tires rubber
Year 2022
Published Journal Of Environmental Chemical Engineering, 10, 1
Abstract Every day, a huge volume of scrap tires are produced worldwide, and landfill is an ineffective method of disposing of such hazardous waste. Pyrolysis can be used to convert tire rubber into energy, allowing for the management of such waste in the context of a circular economy. The composition and pyrolysis kinetics of granulated (0.6-0.8 mm) scrap tire rubber (TR) were assessed using thermogravimetry (TG). Data on rubber composition revealed that TG is a quick and accurate technique for determining TR composition. The TG tests with catalysts revealed that using alkali (K, Ca, and Mg) carbonates as catalysts improved the thermal degradation rate. The MgCO3 was able to duplicate the rate of TR thermal degradation. Data from a fixed bed pyrolysis reactor revealed oil yields of around 50% in the 673-773 K temperature range. The effect of alkali carbonate catalysts inferred from TG tests was confirmed by catalyzed pyrolysis tests. The calcium and magnesium carbonate catalysts significantly increased the gas product yield, with the CaCO3 catalyst having the greatest drop in oil yield due to likely secondary pyrolysis processes. Because of the low pyrolysis temperature, the acidic catalysts (SiO2, TiO2, Al2O3, and montmorillonite) had almost no effect on the pyrolysis product distribution. For all of the catalysts used, the ATR-FTIR spectra of the produced oils exhibited characteristics similar to those of diesel fuel. Data showed that alkali carbonate catalysts (mainly Mg and Ca), cheap and environmentally benign materials, can be used to tailor the TR pyrolysis products distribution allowing a more profitable process.
PDF

Similar Articles

ID Score Article
16049 Azócar, BS; Vargas, PO; Campos, C; Medina, F; Arteaga-Pérez, LE Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts(2022)
14817 González-Pernas, FM; Moreno, I; Serrano, DP; Pizarro, P Enhanced monoaromatic hydrocarbons production via pressurized catalytic pyrolysis of end-of-life tires(2024)
9899 Zhang, MH; Qi, YF; Zhang, W; Wang, MT; Li, JY; Lu, Y; Zhang, S; He, JZ; Cao, H; Tao, X; Xu, HL; Zhang, S A review on waste tires pyrolysis for energy and material recovery from the optimization perspective(2024)
28833 Nunes, LJR; Guimaraes, L; Oliveira, M; Kille, P; Ferreira, NGC Thermochemical Conversion Processes as a Path for Sustainability of the Tire Industry: Carbon Black Recovery Potential in a Circular Economy Approach(2022)Clean Technologies, 4.0, 3
13011 Costa, SMR; Fowler, D; Carreira, GA; Portugal, I; Silva, CM Production and Upgrading of Recovered Carbon Black from the Pyrolysis of End-of-Life Tires(2022)Materials, 15.0, 6
26044 Martínez, JD; Campuzano, F; Cardona-Uribe, N; Arenas, CN; Muñoz-Lopera, D Waste tire valorization by intermediate pyrolysis using a continuous twin-auger reactor: Operational features(2020)
26441 Martínez, JD; Campuzano, F; Agudelo, AF; Cardona-Uribe, N; Arenas, CN Chemical recycling of end-of-life tires by intermediate pyrolysis using a twin-auger reactor: Validation in a laboratory environment(2021)
21976 Urrego-Yepes, W; Cardona-Uribe, N; Vargas-Isaza, CA; Martínez, JD Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation(2021)
22771 Wu, QJ; Zhang, QQ; Chen, XY; Song, GH; Xiao, J Life cycle assessment of waste tire recycling: Upgraded pyrolytic products for new tire production(2024)
4084 Martínez, JD An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy(2021)
Scroll