Knowledge Agora



Similar Articles

Title Optimisation of Ultrasound Pretreatment of Microalgal Biomass for Effective Biogas Production through Anaerobic Digestion Process
ID_Doc 13641
Authors Paul, R; Silkina, A; Melville, L; Suhartini, S; Sulu, M
Title Optimisation of Ultrasound Pretreatment of Microalgal Biomass for Effective Biogas Production through Anaerobic Digestion Process
Year 2023
Published Energies, 16, 1
Abstract The anaerobic digestion, AD, process presents a solution for sustainable waste management, greenhouse gas mitigation and energy production for growing population needs and requirements. Adopting a biorefinery approach that utilises different feedstock may enhance energy production and support optimisation of the anaerobic digestion process. Algae is a promising feedstock that could be used for energy production via the anaerobic digestion process. Microalgal biomass is rich in carbohydrates and lipids; however, many species of algae exhibit tough cell walls that could also be difficult to digest and may influence or inhibit the efficiency of the AD process. This study concentrated on the comparison of AD remediation of two marine algal biomass species, Tetraselmis suecica and Nannochloropsis oceanica. The two species were pre-treated with an ultrasound technique and compared for their methane production using biochemical methane potential tests. For Tetraselmis, a specific methane production of 0.165 LCH4/KgVS was observed; however, for Nannochloropsis, a value of 0.101 LCH4/KgVS was observed for the samples treated with ultrasound. The BMP results from this study show that among the two micro-algae species tested, Tetraselmis suecica is found to be a better substrate for methane production potential. Contrary to increasing the specific methane production, ultrasound cavitation caused a slight decrease in the specific methane production values for both Nannochloropsis oceanica and Tetraselmis suecica biomass residues. The pre-treatment of the biomass using ultrasound techniques provided comparable results and can be recommended for effective bioenergy production. However, further research is required for the optimisation of the pre-treatment of microalgae and for the integration of microalgal biorefineries for circular economy.
PDF

Similar Articles

ID Score Article
13976 Avila, R; Carrero, E; Vicent, T; Blánquez, P Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae(2021)
14115 Hubenov, V; Carcioch, RA; Ivanova, J; Vasileva, I; Dimitrov, K; Simeonov, I; Kabaivanova, L Biomethane production using ultrasound pre-treated maize stalks with subsequent microalgae cultivation(2020)Biotechnology & Biotechnological Equipment, 34, 1
2956 Chhandama, M; Rai, PK; Lalawmpuii Coupling bioremediation and biorefinery prospects of microalgae for circular economy(2023)
6232 Li, G; Hu, RC; Wang, N; Yang, TL; Xu, FZ; Li, JL; Wu, JH; Huang, ZG; Pan, MM; Lyu, T Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment(2022)
20609 Hubenov, V; Ivanova, J; Nacheva, L; Kabaivanova, L Agricultural waste utilization for biomethane and algae-based fertilizer production for circular economy(2023)Bulgarian Journal Of Agricultural Science, 29, 6
23632 Abomohra, A; Almutairi, AW A close-loop integrated approach for microalgae cultivation and efficient utilization of agar-free seaweed residues for enhanced biofuel recovery(2020)
8085 Nguyen, MLT; Lin, CY; Lay, CH Microalgae cultivation using biogas and digestate carbon sources(2019)
20295 Hoang, AT; Sirohi, R; Pandey, A; Nizetic, S; Lam, SS; Chen, WH; Luque, R; Thomas, S; Arici, M; Pham, VV Biofuel production from microalgae: challenges and chances(2023)Phytochemistry Reviews, 22, 4
12761 Catone, CM; Ripa, M; Geremia, E; Ulgiati, S Bio-products from algae-based biorefinery on wastewater: A review(2021)
13180 Choudhary, S; Tripathi, S; Poluri, KM Microalgal-Based Bioenergy: Strategies, Prospects, and Sustainability(2022)Energy & Fuels, 36, 24
Scroll