Knowledge Agora



Similar Articles

Title High cellulase-free xylanases production by Moesziomyces aphidis using low-cost carbon and nitrogen sources
ID_Doc 13675
Authors Faria, NT; Marques, S; Cerejo, J; Vorobieva, E; Ferreira, FC; Fonseca, C
Title High cellulase-free xylanases production by Moesziomyces aphidis using low-cost carbon and nitrogen sources
Year 2022
Published Journal Of Chemical Technology And Biotechnology, 97, 11
Abstract Background Enzymes involved in xylan hydrolysis have several industrial applications. Selection of efficient microbial hosts and scalable bioreaction operations can lower enzyme production costs and contribute to their commercial deployment. This work aims at investigating the Moesziomyces aphidis yeast cultivation conditions that deliver maximal xylanase titres, yields and productivities using low-cost nitrogen (N) and carbon (C) sources. Results NaNO3 and KNO3 supplementation improved xylanase production 2.9- and 2.7-fold (against 67.2 U mL(-1)), respectively, using xylan as C source. Interestingly, the use of KNO3, instead of NaNO3, results in 2- to 3-fold higher specific activity, highlighting the potassium ion role. In addition, this study investigates synergetic effects on using ionic and organic N sources. A 4.9-fold increase in xylanase production, with high specific activity, is attained combining KNO3 and corn steep liquor (CSL). Exploring the previous findings, this study reports one of the highest extracellular xylanase production titres (864.7 U mL(-1)) by yeasts, using a media formulation containing dilute-acid pre-treated brewery spent grains (BSG), as C source and inducer, supplemented with KNO3 and CSL. Replacement of dilute-acid pre-treatmed BSG by untreated BSG had low impact on xylanase production, of only 6%. Conclusion Efficient production of M. aphidis xylanolytic enzymes, using low-cost N and C sources, is attractive for deployment of on-site enzyme production targeting different biotechnological applications under circular economy and biorefinery concepts. Potential xylanases end-users include industries such as brewing (using BSG as substrate for enzyme production), pulp and paper (benefiting from the cellulase-free xylanase activity) or lignocellulosic ethanol (for cellulase supplementation). (c) 2022 Society of Chemical Industry (SCI).
PDF https://vbn.aau.dk/files/532538007/High_cellulase_free_xylanases_production_by_Moesziomyces_aphidis_using_low_cost_carbon_and_nitrogen_sources.pdf

Similar Articles

ID Score Article
20716 Taddia, A; Brandaleze, GN; Boggione, MJ; Bortolato, SA; Tubio, G An integrated approach to the sustainable production of xylanolytic enzymes fromAspergillus nigerusing agro-industrial by-products(2020)Preparative Biochemistry & Biotechnology, 50, 10
9109 Qeshmi, FI; Homaei, A; Fernandes, P; Hemmati, R; Dijkstra, BW; Khajeh, K Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications(2020)Biochimica Et Biophysica Acta-Proteins And Proteomics, 1868.0, 2
13807 Teigiserova, DA; Bourgine, J; Thomsen, M Closing the loop of cereal waste and residues with sustainable technologies: An overview of enzyme production via fungal solid-state fermentation(2021)
24842 Singh, G; Samuchiwal, S; Hariprasad, P; Sharma, S Melioration of Paddy Straw to produce cellulase-free xylanase and bioactives under Solid State Fermentation and deciphering its impact by Life Cycle Assessment(2022)
21534 Pellieri, CM; Taddia, A; Loureiro, DB; Bortolato, SA; Tubio, G Spartina argentinensis valorization and process optimization for enhanced production of hydrolytic enzymes by filamentous fungus(2022)
9851 Guimaraes, A; Mota, AC; Pereira, AS; Fernandes, AM; Lopes, M; Belo, I Rice Husk, Brewer's Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production(2024)Materials, 17.0, 4
7444 Vichitraka, A; Somboon, P; Tantratian, S; Onmankhong, J; Sirisomboon, P; Pornchaloempong, P; Pukahuta, C; Pornpukdeewattana, S; Krusong, W; Charoenrat, T Application of baby corn husk as a biological sustainable feedstock for the production of cellulase and xylanase by Lentinus squarrosulus Mont.(2023)
24653 Sosa-Martínez, JD; Morales-Oyervides, L; Montañez, J; Contreras-Esquivel, JC; Balagurusamy, N; Gadi, SK; Salmerón, I Sustainable Co-Production of Xylanase, Cellulase, and Pectinase through Agroindustrial Residue Valorization Using Solid-State Fermentation: A Techno-Economic Assessment(2024)Sustainability, 16, 4
28008 Domingues, R; Bondar, M; Palolo, I; Queirós, O; de Almeida, CD; Cesário, MT Xylose Metabolism in Bacteria-Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries(2021)Applied Sciences-Basel, 11.0, 17
13360 Mihajlovski, K; Buntic, A; Milic, M; Rajilic-Stojanovic, M; Dimitrijevic-Brankovic, S From Agricultural Waste to Biofuel: Enzymatic Potential of a Bacterial Isolate Streptomyces fulvissimus CKS7 for Bioethanol Production(2021)Waste And Biomass Valorization, 12, 1
Scroll