Knowledge Agora



Similar Articles

Title Waste-to-Energy Pipeline through Consolidated Fermentation-Microbial Fuel Cell (MFC) System
ID_Doc 13688
Authors Kumar, K; Ding, L; Zhao, HY; Cheng, MH
Title Waste-to-Energy Pipeline through Consolidated Fermentation-Microbial Fuel Cell (MFC) System
Year 2023
Published Processes, 11, 8
Abstract The rise in population, urbanization, and industrial developments have led to a substantial increase in waste generation and energy demand, posing significant challenges for waste management as well as energy conservation and production. Bioenergy conversions have been merged as advanced, sustainable, and integrated solutions for these issues, encompassing energy generation and waste upcycling of different types of organic waste. Municipal solid waste (MSW) and agricultural residues (AR) are two main resources for bioenergy conversions. Bioenergy production involves feedstock deconstruction and the conversion of platform chemicals to energy products. This review provides a detailed overview of waste sources, biofuel, and bioelectricity production from fermentation and microbial fuel cell (MFC) technology, and their economic and environmental perspectives. Fermentation plays a critical role in liquid biofuel production, while MFCs demonstrate promising potential for simultaneous production of electricity and hydrogen. Fermentation and MFCs hold a significant potential to be integrated into a single pipeline, enabling the conversion of organic matter, including a variety of waste material and effluent, into diverse forms of bioenergy via microbial cultures under mild conditions. Furthermore, MFCs are deemed a promising technology for pollutant remediation, reducing COD levels while producing bioenergy. Importantly, the consolidated fermentation-MFC system is projected to produce approximately 7.17 trillion L of bioethanol and 6.12 x 10(4) MW/m(2) of bioelectricity from MSW and AR annually, contributing over USD 465 billion to the global energy market. Such an integrated system has the potential to initiate a circular economy, foster waste reduction, and improve waste management practices. This advancement could play a crucial role in promoting sustainability across the environmental and energy sectors.
PDF https://www.mdpi.com/2227-9717/11/8/2451/pdf?version=1692083357

Similar Articles

ID Score Article
8959 Ram, C; Kumar, A; Rani, P Municipal Solid Waste Management: A Review of Waste to Energy (WtE) Approaches(2021)Bioresources, 16.0, 2
16191 Garg, A; Basu, S; Shetti, NP; Bhattu, M; Alodhayb, AN; Pandiaraj, S Biowaste to bioenergy nexus: Fostering sustainability and circular economy(2024)
6896 Puyol, D; Batstone, D; Hülsen, T; Astals, S; Peces, M; Krömer, JO Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects(2017)
6563 Ye, YY; Guo, WS; Ngo, HH; Wei, W; Cheng, DL; Bui, XT; Hoang, NB; Zhang, HY Biofuel production for circular bioeconomy: Present scenario and future scope(2024)
22357 Tiwari, A; Nakamura, K Closing the loop on biohydrogen production: A critical review on the post-fermentation broth management techniques(2024)
28526 Ewing, TA; Nouse, N; van Lint, M; van Haveren, J; Hugenholtz, J; van Es, DS Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022-2050(2022)Green Chemistry, 24.0, 17
8002 Abubackar, HN; Biryol, I; Ayol, A Yeast industry wastewater treatment with microbial fuel cells: Effect of electrode materials and reactor configurations(2023)International Journal Of Hydrogen Energy, 48, 33
9762 Cecconet, D; Molognoni, D; Callegari, A; Capodaglio, AG Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues(2018)International Journal Of Hydrogen Energy, 43.0, 1
29352 Rene, ER; Veiga, MC; Kennes, C Recent Trends in Biogenic Gas, Waste and Wastewater Fermentation(2022)Fermentation-Basel, 8.0, 8
14709 Sonawane, JM; Mahadevan, R; Pandey, A; Greener, J Recent progress in microbial fuel cells using substrates from diverse sources(2022)Heliyon, 8, 12
Scroll