Knowledge Agora



Similar Articles

Title Co-valorization of discarded wood pinchips and sludge from the pulp and paper industry for production of advanced biofuels
ID_Doc 13852
Authors Romaní, A; Del-Río, PG; Rubira, A; Pérez, MJ; Garrote, G
Title Co-valorization of discarded wood pinchips and sludge from the pulp and paper industry for production of advanced biofuels
Year 2024
Published
Abstract Several lignocellulosic wastes are generated in the pulp and paper industry (PPI), such as small wood chips (pinchips) and paper sludge, presenting a high cellulose content suitable to be converted into biofuels or bioproducts in a forest biorefinery scheme. In this work, two schemes of biorefinery were proposed for their valorization, processing small eucalyptus wood pinchips in two different strategies: (i) autohydrolysis at 230 degrees C, and (ii) autohydrolysis at 195 degrees C followed by organosolv process (47.7% ethanol-water, 198 degrees C for 60 min). More than 95% of cellulose was recovered in both schemes. In the combined process, 76% of delignification was achieved and 78% of xylan was solubilized as xylooligosaccharides. To reduce operational cost of lignocellulosic biomass-to-ethanol fermentation, the mixture of the treated eucalyptus pinchips from two processes with sludge was also proposed to increase the initial glucan content and to supply a rich source of nitrogen (present in the sludge). For that, two experimental designs were carried out for ethanol production by simultaneous saccharification and fermentation (SSF) process. Ethanol from SSF assays using sludge as co-substrate at 0.6 g of sludge/g of treated wood pinchips and 16 FPU/g of pretreated solids allowed to obtain 59 g/L (90% of conversion) and 46 g/L (96% of conversion) when blended with the wood from autohydrolysis and with the wood from autohydrolysis followed by organosolv, respectively. Overall, this study shows an alternative process valorization of biomasses derived from PPI for production of advanced biofuels and bio-products (such as xylooligosaccharides and lignin) contributing to achieving a circular economy.
PDF https://doi.org/10.1016/j.indcrop.2023.117992

Similar Articles

ID Score Article
14861 Gonzalez-Garcia, S; Gullón, B; Moreira, MT Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides(2018)
26854 Amândio, MST; Rocha, JMS; Xavier, AMRB Improving simultaneous saccharification and fermentation by pre-saccharification and high solids operation for bioethanol production from Eucalyptus globulus bark(2023)Journal Of Environmental Chemical Engineering, 11, 5
9487 Branco, RHR; Serafim, LS; Xavier, AMRB Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock(2018)Fermentation-Basel, 5.0, 1
9105 Guragain, YN; Vadlani, PV Renewable Biomass Utilization: A Way Forward to Establish Sustainable Chemical and Processing Industries(2021)Clean Technologies, 3.0, 1
15113 Carrillo-Nieves, D; Saldarriaga-Hernandez, S; Gutiérrez-Soto, G; Rostro-Alanis, M; Hernández-Luna, C; Alvarez, AJ; Iqbal, HMN; Parra-Saldívar, R Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste(2022)Biomass Conversion And Biorefinery, 12, 2
12484 Broda, M; Yelle, DJ; Serwanska, K Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions(2022)Molecules, 27.0, 24
16629 Pandey, A; Sharma, YC Advancements in biomass valorization in integrated biorefinery systems(2024)
9021 Srivastava, N; Singh, R; Singh, P; Ahmad, I; Singh, RP; Rai, AK; Asiri, M; Gupta, VK Recent advances on lignocellulosic bioresources and their valorization in biofuels production: Challenges and viability assessment(2023)
27553 Elsayed, M; Madadi, M; Song, GJ; Zhou, ZH; Wang, HJ; Wang, J; Zhang, JH; Aghbashlo, M; Tabatabaei, M Upcycling furfural residues into bioethanol and pyrolytic oil through a cascading biorefinery approach(2024)
18746 Ko, CH; Yang, BY; Lin, LD; Chang, FC; Chen, WH Impact of pretreatment methods on production of bioethanol and nanocrystalline cellulose(2020)
Scroll