Knowledge Agora



Similar Articles

Title Potentially toxic elements in solid waste streams: Fate and management approaches
ID_Doc 13867
Authors Xiong, XN; Liu, XM; Yu, IKM; Wang, L; Zhou, J; Sun, X; Rinklebe, J; Shaheen, SM; Ok, YS; Lin, Z; Tsang, DCW
Title Potentially toxic elements in solid waste streams: Fate and management approaches
Year 2019
Published
Abstract Solid wastes containing potentially toxic elements (PTEs) are widely generated around the globe. Critical concerns have been raised over their impacts on human health and the environment, especially for the exposure to PTEs during the transfer and disposal of the wastes. It is important to devise highly-efficient and cost-effective treatment technologies for the removal or immobilisation of PTEs in solid wastes. However, there is an inadequate overview of the global flow of PTEs-contaminated solid wastes in terms of geographical distribution patterns, which is vital information for decision making in sustainable waste management. Moreover, in view of the scarcity of resources and the call for a circular economy, there is a pressing need to recover materials (e.g., precious metals and rare earth elements) from waste streams and this is a more sustainable and environmentally friendly practice compared with ore mining. Therefore, this article aims to give a thorough overview to the global flow of PTEs and the recovery of waste materials. This review first summarises PTEs content in various types of solid wastes; then, toxic metal(loid)s, radioactive elements, and rare earth elements are critically reviewed, with respect to their patterns of transport transformation and risks in the changing environment. Different treatments for the management of these contaminated solid wastes are discussed. Based on an improved understanding of the dynamics of metal(loid) fates and a review of existing management options, new scientific insights are provided for future research in the development of high-performance and sustainable treatment technologies for PTEs in solid wastes. (C) 2019 Elsevier Ltd. All rights reserved.
PDF http://ira.lib.polyu.edu.hk/bitstream/10397/101148/1/Tsang_Potentially_Toxic_Elements.pdf

Similar Articles

ID Score Article
16660 Burlakovs, J; Jani, Y; Kriipsalu, M; Vincevica-Gaile, Z; Kaczala, F; Celma, G; Ozola, R; Rozina, L; Rudovica, V; Hogland, M; Viksna, A; Pehme, KM; Hogland, W; Klavins, M On the way to 'zero waste' management: Recovery potential of elements, including rare earth elements, from fine fraction of waste(2018)
15675 Kotte-Hewa, DJ; Durce, D; Salah, S; Cánovas, CR; Smolders, E Remediation of acid mine drainage and immobilization of rare earth elements: Comparison between natural and residual alkaline materials(2023)
29656 Sapsford, D; Cleall, P; Harbottle, M In Situ Resource Recovery from Waste Repositories: Exploring the Potential for Mobilization and Capture of Metals from Anthropogenic Ores(2017)Journal Of Sustainable Metallurgy, 3.0, 2
16538 Ghani, J; Toller, S; Dinelli, E; Funari, V Impact and recoverability of metals from waste: a case study on bottom ash from municipal solid waste incineration plants(2023)
22055 Abidli, A; Huang, YF; Ben Rejeb, Z; Zaoui, A; Park, CB Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future(2022)
28019 Lee, H; Coulon, F; Beriro, DJ; Wagland, ST Recovering metal(loids) and rare earth elements from closed landfill sites without excavation: Leachate recirculation opportunities and challenges(2022)
28586 Al Momani, DE; Al Ansari, Z; Ouda, M; Abujayyab, M; Kareem, M; Agbaje, T; Sizirici, B Occurrence, treatment, and potential recovery of rare earth elements from wastewater in the context of a circular economy(2023)
24462 Dutta, D; Rautela, R; Gujjala, LKS; Kundu, D; Sharma, P; Tembhare, M; Kumar, S A review on recovery processes of metals from E-waste: A green perspective(2023)
Scroll