Knowledge Agora



Similar Articles

Title Are alternative magnesium sources the key for a viable downstream transfer of struvite precipitation? Assessment of process feasibility and precipitate characteristics
ID_Doc 13930
Authors Rodrigues, DM; Fragoso, RD; Carvalho, AP; Hein, T; de Brito, AG
Title Are alternative magnesium sources the key for a viable downstream transfer of struvite precipitation? Assessment of process feasibility and precipitate characteristics
Year 2022
Published
Abstract Phosphorus (P) recovery in source-separated decentralised wastewater treatment processes is an eco-efficient strategy in accordance with a circular economy perspective. Struvite (MgNH4PO4.6H2O) capture allows a reduction of P discharged to surface waters and generates a product known for its slow-release fertiliser properties. However, the cost and availability of current commercial Mg2+ sources hinder the downstream transfer of struvite precipitation. Although some alternative sources are available, there is a lack of information on how they compare to conventional sources; it is also not known how the Mg:PO4 ratio affects process performance or fertiliser product suitability. Therefore, this research evaluated the performance of two alternative sources, seasalt and seawater bittern, at different Mg:PO4 ratios. The results indicate that seasalt may be a problematic option owing to its high levels of NaCl, regardless of the Mg:PO4 level, which could affect soil fertility. Bittern, meanwhile, showed a high yield at pH 8.5 and Mg:PO4 1.2:1, achieving 99% recovery of PO4 and increasing also the recovery yield from 60% (using conventional sources) to 82% at Mg:PO4 1:2. In addition, bittern showed larger X-type crystals than commercial sources. The precipitate is composed mainly of struvite and Newberyite (MgHPO4.3H2O), with traces of K+, and no presence of NaCl at Mg:PO4 1.2:1; while at Mg:PO4 1:2 it forms a mixture of struvite with presence of Ca and K phosphates. In conclusion, bittern is an effective raw material to improve the downstream transfer of struvite precipitation into urine-diverting toilets in wastewater treatment systems.
PDF

Similar Articles

ID Score Article
25240 Pesonen, J; Janssens, F; Hu, T; Lassi, U; Tuomikoski, S Precipitation of struvite using MgSO4 solution prepared from sidestream dolomite or fly ash(2022)Heliyon, 8, 12
21409 Vasa, TN; Chacko, SP Recovery of struvite from wastewaters as an eco-friendly fertilizer: Review of the art and perspective for a sustainable agriculture practice in India(2021)
10062 Rodrigues, DM; Fragoso, RD; Carvalho, AP; Hein, T; de Brito, AG Recovery of phosphates as struvite from urine-diverting toilets: optimization of pH, Mg:PO4 ratio and contact time to improve precipitation yield and crystal morphology(2019)Water Science And Technology, 80.0, 7
13969 Sciarria, TP; Zangarini, S; Tambone, F; Trombino, L; Puig, S; Adani, F Phosphorus recovery from high solid content liquid fraction of digestate using seawater bittern as the magnesium source(2023)
7884 Tuomikoski, S; Sauvola, E; Riponiemi, M; Lassi, U; Pesonen, J Usage of phosphoric acid plant's circulate pond waters in struvite precipitation-Effect of conditions(2023)Water And Environment Journal, 37, 3
9267 Bastrzyk, A; Pacyna-Iwanicka, K; Dawiec-Lisniewska, A; Czuba, K; Janiak, K; Chrobot, P; Okoro, OV; Shavandi, A; Podstawczyk, D Management of secondary effluent using novel membrane technology to recover water and magnesium ions for phosphate precipitation: An integrated pilot-scale study(2024)
2697 Achilleos, P; Roberts, KR; Williams, ID Struvite precipitation within wastewater treatment: A problem or a circular economy opportunity?(2022)Heliyon, 8, 7
13565 Shaddel, S; Grini, T; Andreassen, JP; Osterhus, SW; Ucar, S Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization(2020)
23587 Li, DY; Cho, YC; Hsu, MH; Lin, YP Recovery of phosphate and ammonia from wastewater via struvite precipitation using spent refractory brick gravel from steel industry(2022)
23750 Sniatala, B; Kurniawan, TA; Sobotka, D; Makinia, J; Othman, D Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively(2023)
Scroll