Knowledge Agora



Similar Articles

Title Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation
ID_Doc 13932
Authors Mukherjee, A; Zaveri, P; Patel, R; Shah, MT; Munshi, NS
Title Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation
Year 2021
Published
Abstract Microbial Fuel Cell (MFC) is an innovative bio-electrochemical approach which converts biochemical energy inherent in wastewater into electrical energy, thus contributing to circular economy. Five electrogenic bacteria, Kocuria rosea (GTPAS76), two strains of Bacillus circulans (GTPO28 and GTPAS54), and two strains of Coryne-bacterium vitaeruminis (GTPO38 and GTPO42) were isolated from a common effluent treatment plant (CETP) and were used individually as well as in consortium form to run double chambered "H" type microbial fuel cell. Individually they could produce voltage in the range of 0.4-0.7 V in the MFC systems. Consortium developed using GTPO28, GTPO38, GTPAS54 and GTPAS76 were capable of producing voltage output of 0.8 V with 81.81 % and 64 % COD and BOD reduction, respectively. The EPS production capacity and electricity generation by the isolated bacteria correlated significantly (r = 0.72). Various parameters like, effect of preformed biofilm, length of salt bridge and its reuse, aeration, substrate concentration and external resistance were studied in detail. The study emphasizes on improving the commercialization aspect of MFC with repeated use of salt bridge and improving wastewater treatment potential after optimization of MFC system. Polarization curve and power density trends were studied in optimized MFC. A maximum power density and current density achieved were 18.15 mW/m(2) and 370.37 mA/m(2), respectively using 5 mM sodium benzoate. This study reports the use of sodium benzoate as a substrate along with reusing of the salt bridge in MFC study with promising results for BOD and COD reduction, proving it to be futuristic technology for bio-based circular ecosystem development.
PDF

Similar Articles

ID Score Article
14709 Sonawane, JM; Mahadevan, R; Pandey, A; Greener, J Recent progress in microbial fuel cells using substrates from diverse sources(2022)Heliyon, 8, 12
19755 Koul, Y; Devda, V; Varjani, S; Guo, WS; Ngo, HH; Taherzadeh, MJ; Chang, JS; Wong, JWC; Bilal, M; Kim, SH; Bui, XT; Parra-Saldívar, R Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater(2022)Bioengineered, 13.0, 4
24544 Kurniawan, TA; Othman, MHD; Liang, X; Ayub, M; Goh, HH; Kusworo, TD; Mohyuddin, A; Chew, KW Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development(2022)Sustainability, 14, 24
9762 Cecconet, D; Molognoni, D; Callegari, A; Capodaglio, AG Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues(2018)International Journal Of Hydrogen Energy, 43.0, 1
5335 Deng, SH; Wang, CQ; Ngo, HH; Guo, WS; You, N; Tang, H; Yu, HB; Tang, L; Han, J Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality(2023)
3744 Gautam, R; Ress, N; Wilckens, RS; Ghosh, UK Hydrogen production in microbial electrolysis cell and reactor digestate valorization for biochar - a noble attempt towards circular economy(2024)
8002 Abubackar, HN; Biryol, I; Ayol, A Yeast industry wastewater treatment with microbial fuel cells: Effect of electrode materials and reactor configurations(2023)International Journal Of Hydrogen Energy, 48, 33
29215 Reddy, CN; Nguyen, HTH; Noori, MT; Min, B Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives(2019)
12383 Qin, S; Liu, HB; Meng, QC; Zhou, YH; Xu, SY; Lichtfouse, E; Chen, ZB Enhanced nutrient removal from mixed black water by a microbial ultra-low weak electrical stimulated anaerobic-two stage anoxic/aerobic process(2022)
18281 Koleva, R; Stankulov, T; Boukoureshtlieva, R; Yemendzhiev, H; Momchilov, A; Nenov, V Alternative Biological Process for Livestock Manure Utilization and Energy Production Using Microbial Fuel Cells(2022)Journal Of The Electrochemical Society, 169.0, 3
Scroll