Knowledge Agora



Similar Articles

Title Development of sustainable resource recovery approach from agro-industrial wastes by revealing the economic added value potential
ID_Doc 13942
Authors Goktepeli, G; Ozgan, A; Onen, V; Ahmetli, G; Kalem, M; Yel, E
Title Development of sustainable resource recovery approach from agro-industrial wastes by revealing the economic added value potential
Year 2024
Published International Journal Of Environmental Science And Technology, 21, 12
Abstract The physicochemical sludge generated from treatment of effluents from marble processing facilities should be managed properly due to their adverse effects on the environment. These sludges can be evaluated as catalyst in pyrolysis since they consist of some inorganics such as CaCO3 and Al or Fe salts which come from marble structure and coagulation-flocculation treatment of the effluent, respectively. Therefore, in this study, an approach for sustainable resource recovery from agro-industrial wastes (olive pomace) was developed by offering a solution to the two different waste types via pyrolysis and by revealing economic value-added potential of the process. Olive pomace-marble sludge catalyst mixtures were pyrolyzed in a laboratory-scale fixed bed batch pyrolysis system by using four catalyst dosages (10, 20, 30 and 50%) and three pyrolysis temperatures (300, 500 and 700 degrees C) at 5 degrees C/min heating rate. Pyrolysis oils and gases were analyzed with GCMS-FID and FTIR for evaluating the potential of economically valuable organic compounds. Organic compounds having extensive usage areas, such as feedstock for surfactants production, emollient, flavoring and softening, and high economic value in the market, such as 1-Pentadecanol, 2-Pentadecanone and Octane, were identified especially in catalytic pyrolysis liquid products. For instance, the potential profit that can be obtained from the conversion of olive pomace to '2-pentadecanone' compound found in catalytic pyrolysis oil produced in this study is around 2.46 x 1013 USD for 2021/22 years at ideal conditions. Consequently, the presented approach contributes to sustainable circular economy via converting wastes into economic value instead of conventional waste disposal methods.
PDF

Similar Articles

ID Score Article
25360 Ahmetli, G; Ozgan, A; Onen, V; Kalem, M; Goktepeli, G; Yel, E Marble processing effluent treatment sludge in waste poly(ethylene terephthalate) pyrolysis as catalyst-II: recovery from pyrolytic fluids(2024)International Journal Of Environmental Science And Technology, 21, 7
14384 Onen, V; Ozgan, A; Goktepeli, G; Kalem, M; Ahmetli, G; Yel, E Marble processing effluent treatment sludge in waste PET pyrolysis as catalyst-I: pyrolysis product yields and the char characteristics(2023)International Journal Of Environmental Science And Technology, 20, 4
12492 Özdemir, A; Özkan, A; Günkaya, Z; Banar, M Co-pyrolysis of municipal solid waste and municipal sewage sludge and characterization of liquid product(2022)Pamukkale University Journal Of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi, 28.0, 6
4002 Chew, KW; Chia, SR; Chia, WY; Cheah, WY; Munawaroh, HSH; Ong, WJ Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy(2021)
27990 Trabelsi, AB; Zaafouri, K; Friaa, A; Abidi, S; Naoui, S; Jamaaoui, F Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar(2021)Environmental Science And Pollution Research, 28.0, 8
12555 Ferrari, V; Nazari, MT; da Silva, NF; Crestani, L; Raymundo, LM; Dotto, GL; Piccin, JS; Oliveira, LFS; Bernardes, AM Pyrolysis: a promising technology for agricultural waste conversion into value-added products(2024)
26507 Sanchez-Hervas, JM; Ortiz, I; Márquez, A; Fernández-Fernández, AM; Canivell, M; Ruiz, E Biomass and waste pyrolysis as a strategy for sustainable production and industrial symbiosis in the Community of Madrid (Spain)(2023)
14625 Bhatt, M; Chakinala, AG; Joshi, JB; Sharma, A; Pant, KK; Shah, KL; Sharma, A Valorization of solid waste using advanced thermo-chemical process: A review(2021)Journal Of Environmental Chemical Engineering, 9, 4
28847 Bolognesi, S; Bernardi, G; Callegari, A; Dondi, D; Capodaglio, AG Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy(2021)Biomass Conversion And Biorefinery, 11.0, 2
13381 Huang, C; Mohamed, BA; Li, LY Comparative life-cycle assessment of pyrolysis processes for producing bio-oil, biochar, and activated carbon from sewage sludge(2022)
Scroll