Knowledge Agora



Similar Articles

Title Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae
ID_Doc 13976
Authors Avila, R; Carrero, E; Vicent, T; Blánquez, P
Title Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae
Year 2021
Published
Abstract Integration of microalgae-based systems with conventional wastewater treatment plants provides an effective alternative to waste stream management. In this work, alkaline and enzymatic pretreatments of a microalgal culture mainly constituted by Chlorella sp. and Scenedesmus sp. and cultivated in wastewater from an industrial winery wastewater treatment plant were assessed. Microalgal enzymatic pre treatments were expected to overcome algal recalcitrancy before anaerobic digestion. pH-induced flocculation at pH 10 and 11 did not enhance microalgal harvesting and solubilisation, achieving a performance similar to that of natural sedimentation. Enzymatic hydrolysis of algal biomass was carried out using three commercial enzymatic cocktails (A, B and C) at two enzymatic doses (1% and 2% (v/v)) over 3 h of exposure time at 37 ?C. Since pretreatments at a 1% dose for 0.5 h and 2% dose for 2 h achieved higher solubilisation, they were selected to evaluate the influence of the pretreatment on microalgal anaerobic digestibility. Biochemical methane potential tests showed that the pretreatments increased the methane production of the raw algal biomass 3.6-to 5.3-fold. The methane yield was 9?27% higher at the lower enzyme dose. Hence, microalgae pretreated with enzymes B and C at a 1% dose were co digested with waste activated sludge (WAS). Even when the enzyme increased the methane yield of the inoculum and the WAS, the methane yield of the raw microalgae and WAS mixture was not significantly different from that obtained when algae were enzymatically pretreated. Nonetheless, co-digestion may achieve the goals of a waste recycled bio-circular economy. ? 2021 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
6232 Li, G; Hu, RC; Wang, N; Yang, TL; Xu, FZ; Li, JL; Wu, JH; Huang, ZG; Pan, MM; Lyu, T Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment(2022)
25272 Nishshanka, GKSH; Thevarajah, B; Nimarshana, PHV; Prajapati, SK; Ariyadasa, TU Real-time integration of microalgae-based bioremediation in conventional wastewater treatment plants: Current status and prospects(2023)
12761 Catone, CM; Ripa, M; Geremia, E; Ulgiati, S Bio-products from algae-based biorefinery on wastewater: A review(2021)
24979 de Morais, EG; Sampaio, ICF; Gonzalez-Flo, E; Ferrer, I; Uggetti, E; García, J Microalgae harvesting for wastewater treatment and resources recovery: A review(2023)
24623 Mondal, S; Bera, S; Mishra, R; Roy, S Redefining the role of microalgae in industrial wastewater remediation(2022)
3501 Vaz, SA; Badenes, SM; Pinheiro, HM; Martins, RC Recent reports on domestic wastewater treatment using microalgae cultivation: Towards a circular economy(2023)
12496 Vu, MT; Vu, HP; Nguyen, LN; Semblante, GU; Johir, A; Nghiem, LD A hybrid anaerobic and microalgal membrane reactor for energy and microalgal biomass production from wastewater(2020)
10259 Tawfik, A; Ismail, S; Elsayed, M; Qyyum, MA; Rehan, M Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives(2022)
12320 Kamravamanesh, D; Kokko, M Source separation and anaerobic co-digestion of blackwater and food waste for biogas production and nutrient recovery(2024)Water Science And Technology, 90.0, 3
18730 Geremia, E; Ripa, M; Catone, CM; Ulgiati, S A Review about Microalgae Wastewater Treatment for Bioremediation and Biomass Production-A New Challenge for Europe(2021)Environments, 8.0, 12
Scroll