Knowledge Agora



Similar Articles

Title A comprehensive framework for the production of mycelium-based lignocellulosic composites
ID_Doc 14129
Authors Elsacker, E; Vandelook, S; Van Wylick, A; Ruytinx, J; De Laet, L; Peeters, E
Title A comprehensive framework for the production of mycelium-based lignocellulosic composites
Year 2020
Published
Abstract Environmental pollution and scarcity of natural resources lead to an increased interest in developing more sustainable materials. For example, the traditional construction industry, which is largely based on the extraction of fossil fuels and raw materials, is called into question. A solution can be found in biologically augmented materials that are made by growing mycelium-forming fungal microorganisms on natural fibres rich in cellulose, hemicellulose and lignin. In this way, organic waste streams, such as agricultural waste, are valorised while creating a material that is biodegradable at the end of its life cycle - a process that fits in the spirit of circular economy. Mycelium-based materials have properties that are promising for a wide range of applications, including the use as construction materials. Despite this promise, the applicability and the practicality of these materials are largely unexplored and moreover, individual studies use a wide range of different experimental approaches and non-standardized procedures. In this review, we critically evaluate existing data on the composition of mycelium-based materials and process variables with the aim of providing a comprehensive framework of the production process. The framework illustrates the many input factors during the production that have an impact on the final characteristics of the material, and the unique potential to deploy more tuneable levels in the fabrications process that can serve to prototype a diversity of new unprecedented applications. Furthermore, we determine the applicability of existing data and identify knowledge gaps. This framework is valuable in identifying standardized approaches for future studies and in informing the design and process of new applications of mycelium-based materials. (C) 2020 Elsevier B.V. All rights reserved.
PDF

Similar Articles

ID Score Article
9319 Angelova, GV; Brazkova, MS; Krastanov, AI Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review(2021)Zeitschrift Fur Naturforschung Section C-A Journal Of Biosciences, 76.0, 11-12
8935 Girometta, C; Picco, AM; Baiguera, RM; Dondi, D; Babbini, S; Cartabia, M; Pellegrini, M; Savino, E Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review(2019)Sustainability, 11.0, 1
10600 Mohseni, A; Vieira, FR; Pecchia, JA; Guersoy, B Three-Dimensional Printing of Living Mycelium-Based Composites: Material Compositions, Workflows, and Ways to Mitigate Contamination(2023)Biomimetics, 8, 2
16925 Muiruri, JK; Yeo, JCC; Zhu, Q; Ye, EY; Loh, XJ; Li, ZB Sustainable Mycelium-Bound Biocomposites: Design Strategies, Materials Properties, and Emerging Applications(2023)Acs Sustainable Chemistry & Engineering, 11, 18
22574 Livne, A; Wösten, HAB; Pearlmutter, D; Gal, E Fungal Mycelium Bio-Composite Acts as a CO2-Sink Building Material with Low Embodied Energy(2022)Acs Sustainable Chemistry & Engineering, 10.0, 37
21761 Mujtaba, M; Fraceto, LF; Fazeli, M; Mukherjee, S; Savassa, SM; de Medeiros, GA; Pereira, ADS; Mancini, SD; Lipponen, J; Vilaplana, F Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics(2023)
12748 Alaux, N; Vasatko, H; Maierhofer, D; Saade, MRM; Stavric, M; Passer, A Environmental potential of fungal insulation: a prospective life cycle assessment of mycelium-based composites(2024)International Journal Of Life Cycle Assessment, 29.0, 2
18766 Bonga, KB; Bertolacci, L; Contardi, M; Paul, UC; Zafar, MS; Mancini, G; Marini, L; Ceseracciu, L; Fragouli, D; Athanassiou, A Mycelium Agrowaste-Bound Biocomposites as Thermal and Acoustic Insulation Materials in Building Construction(2024)Macromolecular Materials And Engineering, 309.0, 6
23718 Alemu, D; Tafesse, M; Mondal, AK Mycelium-Based Composite: The Future Sustainable Biomaterial(2022)
4004 Barta, DG; Simion, I; Tiuc, AE; Vasile, O Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy(2024)Materials, 17, 2
Scroll