Knowledge Agora



Similar Articles

Title Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination
ID_Doc 14174
Authors Tufa, RA; Noviello, Y; Di Profio, G; Macedonio, F; Ali, A; Drioli, E; Fontananova, E; Bouzek, K; Curcio, E
Title Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination
Year 2019
Published
Abstract Although desalination market is today dominated by Seawater Reverse Osmosis (SWRO), important technological issues remain unaddressed, specifically: relatively low water recovery factor (around 50%) and consequent huge amount of brine discharged, and energy consumption (3-5 kWh/m(3)) still far from the minimum thermodynamic value (similar to 1 kWh/m(3)). Herein, the energy performance of an innovative systems combining SWRO, Membrane Distillation (MD) and Reverse Electrodialysis (RED) for simultaneous production of water and energy is investigated. The valorization of hypersaline waste brine by Salinity Gradient Power production via RED and the achievement of high recovery factors (since MD is not limited by osmotic phenomena) represent a step forward to the practical implementation of Zero Liquid Discharge and low-energy desalination. The analysis is supported by lab-scale experimental tests carried out on MD and RED over a broad set of operational conditions. Among the different case studies investigated, exergetic efficiency reached 49% for the best scenario, i.e. MD feed temperature of 60 degrees C, MD brine concentration of 5M NaCl, RED power density of 2.2 W/m(2)MP (MP: membrane pair). Compared to the benchmark flowsheet (only SWRO), up to 23% reduction in electrical energy consumption and 16.6% decrease in specific energy consumption were achieved when including a RED unit. The analysis also indicates that optimization of thermal energy input at the MD stage is critical, although it can potentially be fulfilled by low-grade waste heat or solar-thermal renewable sources. Overall, the proposed integrated system is coherent with the emergent paradigm of Circular Economy and the logic of Process Intensification.
PDF

Similar Articles

ID Score Article
9964 Herrero-Gonzalez, M; Ibañez, R Chemical and Energy Recovery Alternatives in SWRO Desalination through Electro-Membrane Technologies(2021)Applied Sciences-Basel, 11.0, 17
22140 Herrero-Gonzalez, M; López, J; Virruso, G; Cassaro, C; Tamburini, A; Cipollina, A; Cortina, JL; Ibañez, R; Micale, G Analysis of Operational Parameters in Acid and Base Production Using an Electrodialysis with Bipolar Membranes Pilot Plant(2023)Membranes, 13.0, 2
23206 Cassaro, C; Virruso, G; Culcasi, A; Cipollina, A; Tamburini, A; Micale, G Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale(2023)Acs Sustainable Chemistry & Engineering, 11, 7
18104 Politano, A; Al-Juboori, RA; Alnajdi, S; Alsaati, A; Athanassiou, A; Bar-Sadan, M; Beni, AN; Campi, D; Cupolillo, A; D'Olimpio, G; D'Andrea, G; Estay, H; Fragouli, D; Gurreri, L; Ghaffour, N; Gilron, J; Hilal, N; Occhiuzzi, J; Carvajal, MR; Ronen, A; Santoro, S; Tedesco, M; Tufa, RA; Ulbricht, M; Warsinger, DM; Xevgenos, D; Zaragoza, G; Zhang, YW; Zhou, M; Curcio, E 2024 roadmap on membrane desalination technology at the water-energy nexus(2024)Journal Of Physics-Energy, 6, 2
12506 Reig, M; Casas, S; Valderrama, C; Gibert, O; Cortina, JL Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines: Production of strong acid and base(2016)
17079 Herrero-Gonzalez, M; Ibañez, R Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process(2022)Membranes, 12, 9
22858 Rahaoui, K; Khayyam, H; Ve, QL; Akbarzadeh, A; Date, A Renewable Thermal Energy Driven Desalination Process for a Sustainable Management of Reverse Osmosis Reject Water(2021)Sustainability, 13.0, 19
22488 Herrero-Gonzalez, M; Diaz-Guridi, P; Dominguez-Ramos, A; Irabien, A; Ibañez, R Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes(2020)
7094 Thiel, GP; Kumar, A; Gómez-González, A; Lienhard, VJH Utilization of Desalination Brine for Sodium Hydroxide Production: Technologies, Engineering Principles, Recovery Limits, and Future Directions(2017)Acs Sustainable Chemistry & Engineering, 5, 12
22276 Reig, M; Valderrama, C; Gibert, O; Cortina, JL Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: Monovalent-divalent ions separation and acid and base production(2016)
Scroll