Knowledge Agora



Similar Articles

Title Impact of the biogas impurities on the quality of the precipitated calcium carbonate in the regenaration stage of a chemical absorption biogas upgrading unit
ID_Doc 14264
Authors Salinero, J; Ferández, LMG; Portillo, E; González-Arias, J; Baena-Moreno, FM; Navarrete, B; Vilches, LF
Title Impact of the biogas impurities on the quality of the precipitated calcium carbonate in the regenaration stage of a chemical absorption biogas upgrading unit
Year 2024
Published Journal Of Environmental Chemical Engineering, 12, 5
Abstract Combining Carbon Capture and Storage (CCS) with producing competitive secondary raw materials is key to decarbonizing industry and reducing resource extraction. Biogas upgrading to biomethane stand out as an alternative, but a significant gap remains in integrating this process within a circular economy framework. This issue has been recently addressed by a process that integrates biogas upgrading via caustic absorption with the production of Precipitated Calcium Carbonate (PCC) and the recovery of sodium hydroxide from waste brine solution using membrane technologies. The profitability of this approach depends on the quality of the PCC, a critical factor that this work addresses. By characterizing PCC is determined whether trace compounds in biogas contaminate the PCC and potentially affect its commercial value. It also examines the CO2 absorption process and analyzes the aqueous samples from the filtration phase of the PCC slurry. Results confirm the high purity of PCC obtained from biogas treatment using Raman spectroscopy, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). The analyses show that the PCC is pure calcium carbonate, mainly in the stable calcite form, with a typical tetrahedral morphology and no detectable impurities. Characterization of aqueous solutions revealed organic trace compounds from biogas, with TOC concentrations of 9.7 (+/- 6.4) and 16.0 (+/- 8) mg C/l. Silicon measurements showed similar concentrations in the absorbent solution and filtrated PCC slurry. Additionally, ammonia escapes as gas, and hydrogen sulfide in the biogas likely contributed to sulfate salt formation. Analysis of the COQ absorption shows a first-order reaction with OH-, where the amount of COQ absorbed (46.3-50.0 g) closely matches the theoretical value of 48 g. The study reveals that most of the biogas impurities dissolve into the aqueous solution, being crucial for future studies and downstream membrane treatments, and the PCC is unaffected by these impurities with a purity suitable for commercial applications.
PDF

Similar Articles

ID Score Article
24889 Abelenda, AM; Dolny, P Production of ammonium bicarbonate from the condensate of the upgrading biogas-pipelines(2024)
2795 Baena-Moreno, FM; le Saché, E; Price, CAH; Reina, TR; Navarrete, B From biogas upgrading to CO2 utilization and waste recycling: A novel circular economy approach(2021)
15558 Ghaleb, AAS; Kutty, SRM; Salih, GHA; Jagaba, AH; Noor, A; Kumar, V; Almahbashi, NMY; Saeed, AAH; Saleh, BNA Sugarcane Bagasse as a Co-Substrate with Oil-Refinery Biological Sludge for Biogas Production Using Batch Mesophilic Anaerobic Co-Digestion Technology: Effect of Carbon/Nitrogen Ratio(2021)Water, 13, 5
12197 Werkneh, AA Biogas impurities: environmental and health implications, removal technologies and future perspectives(2022)Heliyon, 8.0, 10
6340 Bernardo, M; Lapa, N; Fonseca, I; Esteves, IAAC Biomass Valorization to Produce Porous Carbons: Applications in CO2 Capture and Biogas Upgrading to Biomethane-A Mini-Review(2021)
24555 Patel, S; Marzbali, MH; Hakeem, IG; Veluswamy, G; Rathnayake, N; Nahar, K; Agnihotri, S; Bergmann, D; Surapaneni, A; Gupta, R; Sharma, A; Shah, KL Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption(2023)
22249 Devi, MK; Manikandan, S; Kumar, PS; Yaashikaa, PR; Oviyapriya, M; Rangasamy, G A comprehensive review on current trends and development of biomethane production from food waste: Circular economy and techno economic analysis(2023)
6081 Sharma, HB; Panigrahi, S; Sarmah, AK; Dubey, BK Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept(2020)
5122 Marzeddu, S; Décima, MA; Camilli, L; Bracciale, MP; Genova, V; Paglia, L; Marra, F; Damizia, M; Stoller, M; Chiavola, A; Boni, MR Physical-Chemical Characterization of Different Carbon-Based Sorbents for Environmental Applications(2022)Materials, 15.0, 20
Scroll