Knowledge Agora



Similar Articles

Title Life cycle sustainability assessment of advanced treatment techniques for urban wastewater reuse and sewage sludge resource recovery
ID_Doc 14292
Authors Tarpani, RRZ; Azapagic, A
Title Life cycle sustainability assessment of advanced treatment techniques for urban wastewater reuse and sewage sludge resource recovery
Year 2023
Published
Abstract Wastewater treatment plants can become a source of valuable resources, such as clean water, energy, fuels and nutri-ents and thus contribute to the sustainable development goals and a transition to a circular economy. This can be achieved by adopting advanced wastewater and sludge treatment techniques. However, these have to be evaluated on their sustainability to avoid any unintentional consequences. Therefore, this paper presents a life cycle sustainabil-ity assessment of advanced wastewater and sludge treatment techniques by integrating the environmental, economic and social aspects. The options considered for advanced wastewater treatment are: i) granular activated carbon; ii) nanofiltration; iii) solar photo-Fenton; and iv) ozonation. The technologies for advanced sludge treatment are: i) agricultural application of anaerobically digested sludge; ii) agricultural application of composted sludge; iii) incineration; iv) pyrolysis; and v) wet air oxidation. The results for the advanced wastewater treatment techniques demonstrate that nanofiltration is the most sustainable option if all the sustainability aspects are considered equally important. If, however, a higher preference is given to the economic aspect, ozonation and granular activated carbon would both be comparable to nanofiltration; if the social aspect is considered more important, only activated carbon would be comparable to nanofiltration. Among the sludge treatment methods, agricultural application of sludge is the most sustainable technique for mean-to-high resource recovery. If the recovery rate is lower, this option is comparable with incineration and pyrolysis with high recovery of their respective products. This work helps to identify the most sustainable techniques that could be combined with conventional wastewater treatments for promoting wastewater reuse and resource recovery across a wide range of operating parameters and products outputs. The findings also sup-port the notion that more sustainable wastewater treatment could be achieved by a circular use of water, energy and nutrients contained in urban wastewaters.
PDF https://doi.org/10.1016/j.scitotenv.2023.161771

Similar Articles

ID Score Article
15001 Shanmugam, K; Gadhamshetty, V; Tysklind, M; Bhattacharyya, D; Upadhyayula, VKK A sustainable performance assessment framework for circular management of municipal wastewater treatment plants(2022)
20088 Yadav, G; Mishra, A; Ghosh, P; Sindhu, R; Vinayak, V; Pugazhendhi, A Technical, economic and environmental feasibility of resource recovery technologies from wastewater(2021)
28517 Ghimire, U; Sarpong, G; Gude, VG Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability(2021)Acs Omega, 6.0, 18
27414 Awasthi, MK; Ganeshan, P; Gohil, N; Kumar, V; Singh, V; Rajendran, K; Harirchi, S; Solanki, MK; Sindhu, R; Binod, P; Zhang, ZQ; Taherzadeh, MJ Advanced approaches for resource recovery from wastewater and activated sludge: A review(2023)
15379 Kehrein, P; van Loosdrecht, M; Osseweijer, P; Posada, J Exploring resource recovery potentials for the aerobic granular sludge process by mass and energy balances - energy, biopolymer and phosphorous recovery from municipal wastewater(2020)Environmental Science-Water Research & Technology, 6, 8
28636 Gherghel, A; Teodosiu, C; De Gisi, S A review on wastewater sludge valorisation and its challenges in the context of circular economy(2019)
6046 Kundu, D; Dutta, D; Samanta, P; Dey, S; Sherpa, KC; Kumar, S; Dubey, BK Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability(2022)
26535 Massara, TM; Komesli, OT; Sozudogru, O; Komesli, S; Katsou, E A Mini Review of the Techno-environmental Sustainability of Biological Processes for the Treatment of High Organic Content Industrial Wastewater Streams(2017)Waste And Biomass Valorization, 8, 5
21489 Dutta, D; Arya, S; Kumar, S Industrial wastewater treatment: Current trends, bottlenecks, and best practices(2021)
13316 Suryawan, IWK; Septiariva, IY; Widanarko, DUF; Qonitan, FD; Sarwono, A; Sari, MM; Prayogo, W; Arifianingsih, NN; Suhardono, S; Lim, JW Enhancing energy recovery from Wastewater Treatment Plant sludge through carbonization(2024)
Scroll