Abstract |
Clearly, the construction sector makes a large scale contribution to environmental degradation and urgently needs to change its principles to focus on environmentally sustainable construction. Earth, as a building material, has a potential cradle to cradle life cycle, thus, achieving a circular economy. This material also displays numerous advantages, namely: economic and ecological and as well as the ease of reuse and recyclability. The earth material also registers a high capacity to absorb and release water vapor, which helps to balance the relative humidity and the internal temperature, promoting not only the comfort of occupants but also the quality of the air in buildings. The materials applied in construction hold great influence over the indoor air quality (IAQ). IAQ ranks as such a crucial issue that it appears in the seventeen 2030 Agenda SDGs. As about 90% of our time is spent inside buildings, whether for leisure or work, it is essential to live in spaces with adequate and healthy interior environments. According to the World Health Organization, good air quality represents a basic requirement for life and is a determining factor for the health and well-being of occupants of indoor spaces. In schools, and due to the complex and diversified activities developed there, in addition to adverse health effects, indoor air quality may also have a direct impact on student concentration and performance. Understanding and studying materials, specifically earth mortars, with the ability to capture pollutants and reduce their concentration while helping to regulate the temperature and relative humidity conditions, and student comfort, is thus extremely important. Hence, with the objective of improving the development of construction strategies, this article details and highlights the beginning of the RESpira project. |