Knowledge Agora



Similar Articles

Title Combined recovery of polyhydroxyalkanoates and reclaimed water in the mainstream of a WWTP for agro-food industrial wastewater valorisation by membrane bioreactor technology
ID_Doc 14392
Authors Traina, F; Corsino, S; Capodici, M; Licitra, E; Di Bella, G; Torregrossa, M; Viviani, G
Title Combined recovery of polyhydroxyalkanoates and reclaimed water in the mainstream of a WWTP for agro-food industrial wastewater valorisation by membrane bioreactor technology
Year 2024
Published
Abstract The present study investigated the combined production of reclaimed water for reuse purposes and polyhydroxyalkanoates (PHA) from an agro-food industrial wastewater. A pilot plant implementing a two-stage process for PHA production was studied. It consisted of a mainstream sequencing batch membrane bioreactor (SBMBR) in which selection of PHA-accumulating organisms and wastewater treatment were carried out in, and a side-stream fed-batch reactor (FBR) where the excess sludge from the SBMBR was used for PHA accumulation. The performance of the SBMBR was compared with that of a conventional sequencing batch reactor (SBR) treating the same wastewater under different food to microorganisms' ratios (F/M) ranging between 0.125 and 0.650 kgCOD kgTSS-3 d-1. The SBMBR enabled to obtain very high-quality effluent in compliance with the relevant national (Italy) and European regulations (Italian DM 185/03 and EU, 2020/741) in the field of wastewater reclamation, whereas the performances in the SBR collapsed at F/M higher than 0.50 kgCOD kgTSS-1d-1.A maximum intracellular storage of 45% (w/w) and a production yield of 0.63 gPHA L - 1h- 1were achieved when the SBMBR system was operated with a F/M ratio close to 0.50 kgCOD kgTSS-1d-1. This resulted approximately 35% higher than those observed in the SBR, since the ultrafiltration membrane avoided the washout of dispersed and filamentous bacteria capable of storing PHA. Furthermore, while maximizing PHA productivity in conventional SBR systems led to process dysfunctions, in the SBMBR system it helped mitigate these issues by reducing membrane fouling behaviour. The results of this study supported the possibility to achieve combined recovery of reclaimed water and high-value added bioproducts using membrane technology, leading the way for agro-food industrial wastewater valorization in the frame of a circular economy model.
PDF

Similar Articles

ID Score Article
16786 Roibás-Rozas, A; Mosquera-Corral, A; Hospido, A Environmental assessment of complex wastewater valorisation by polyhydroxyalkanoates production(2020)
15559 Moretto, G; Russo, I; Bolzonella, D; Pavan, P; Majone, M; Valentino, F An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas(2020)
13152 Ahuja, V; Singh, PK; Mahata, C; Jeon, JM; Kumar, G; Yang, YH; Bhatia, SK A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater(2024)Microbial Cell Factories, 23, 1
28672 Roibás-Rozasa, A; del Oso, MS; Posada, JA; Mosquera-Corral, A; Hospido, A A circular economy strategy for valorizing industrial saline wastewaters: Techno-economics and environmental impacts(2023)
25801 Kora, E; Antonopoulou, G; Zhang, Y; Yan, Q; Lyberatos, G; Ntaikou, I Investigating the efficiency of a two-stage anaerobic-aerobic process for the treatment of confectionery industry wastewaters with simultaneous production of biohydrogen and polyhydroxyalkanoates.(2024)
21464 Traina, F; Corsino, S; Torregrossa, M; Viviani, G Biopolymer Recovery from Aerobic Granular Sludge and Conventional Flocculent Sludge in Treating Industrial Wastewater: Preliminary Analysis of Different Carbon Routes for Organic Carbon Utilization(2023)Water, 15.0, 1
6293 Mannina, G; Presti, D; Montiel-Jarillo, G; Carrera, J; Suárez-Ojeda, ME Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review(2020)
29379 Castro-Muñoz, R; Barragán-Huerta, BE; Fíla, V; Denis, PC; Ruby-Figueroa, R Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds(2018)Waste And Biomass Valorization, 9.0, 4
16647 Abdel-Fatah, MA Integrated Management of Industrial Wastewater in the Food Sector(2023)Sustainability, 15, 23
6046 Kundu, D; Dutta, D; Samanta, P; Dey, S; Sherpa, KC; Kumar, S; Dubey, BK Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability(2022)
Scroll