Knowledge Agora



Similar Articles

Title Phosphate removal from synthetic and real wastewater using thermally treated seagrass residues of Posidonia oceanica
ID_Doc 14405
Authors Photiou, P; Koutsokeras, L; Constantinides, G; Koutinas, M; Vyrides, I
Title Phosphate removal from synthetic and real wastewater using thermally treated seagrass residues of Posidonia oceanica
Year 2021
Published
Abstract The objective of this work is to provide an insight into new low-cost adsorbent materials, for optimum recovery of phosphate from real wastewater. Several biowastes were tested for their capacity to adsorb phosphate: (a) orange peels, (b) coffee residues, (c) fish scales, (d) seagrass residues of P. oceanica, (e) biochar produced from olive kernels, and (f) biochar generated from vineyard prunings. Thermally treated seagrass residues exhibited the highest phosphate adsorption capacity among the aforementioned biowastes at 100 mg L-1 initial phosphate concentration. The optimum pre-treatment temperature and exposure time were determined as 500 degrees C and 1 h respectively, while washing with water the seagrass prior adsorption did not affect the adsorption process. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that phosphate is more or less distributed within the majority of the thermally treated seagrass which relates to its high surface area owing to its tubular microstructure and thermal activation. Adsorption kinetics were best fitted to the pseudo-first order followed by the Freundlich isotherm indicating physical adsorption as the main mechanism. Phosphate removal from the supernatant of anaerobic digester and the liquid extracted from anaerobic dewatered sludge using thermally treated seagrass residues in neutral pH reached 81 and 86%, respectively. Under these conditions, thermally treated seagrass residues demonstrated high selectivity towards phosphate compared to NH4+ and organic compounds. To the best of our knowledge, this is the first study that demonstrates the use of thermally treated seagrass residues as a low-cost adsorbent material with high selectivity towards phosphate from real wastewater and reveals a new potential for using seagrass residues in a circular economy concept. (C) 2020 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
25622 Brakemi, E; Michael, K; Tan, SP; Helen, H Phosphate removal from wastewater using scallop and whelk shells(2023)
27145 Hernández-Navarro, C; Pérez, S; Flórez, E; Acelas, N; Muñoz-Saldaña, J Sargassum macroalgae from Quintana Roo as raw material for the preparation of high-performance phosphate adsorbent from aqueous solutions(2023)
25041 Pap, S; Zhang, HY; Bogdan, A; Elsby, DT; Gibb, SW; Bremner, B; Taggart, MA Pilot-scale phosphate recovery from wastewater to create a fertiliser product: An integrated assessment of adsorbent performance and quality(2023)
24906 Pap, S; Gaffney, PPJ; Bremner, B; Sekulic, MT; Maletic, S; Gibb, SW; Taggart, MA Enhanced phosphate removal and potential recovery from wastewater by thermo-chemically calcinated shell adsorbents(2022)
13773 Nardis, BO; Franca, JR; Carneiro, JSD; Soares, JR; Guilherme, LRG; Silva, CA; Melo, LCA Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution(2022)
11041 Liu, ZH; Liu, HB; Zhang, Y; Lichtfouse, E Efficient phosphate recycling by adsorption on alkaline sludge biochar(2023)Environmental Chemistry Letters, 21, 1
16342 Patyal, V; Jaspal, D; Khare, K Materials for phosphorous remediation: a review(2021)Phosphorus Sulfur And Silicon And The Related Elements, 196, 12
28814 Pap, S; Boyd, KG; Taggart, MA; Sekulic, MT Circular economy based landfill leachate treatment with sulphur-doped microporous biochar(2021)
26122 Pap, S; Stankovits, GJ; Gyalai-Korpos, M; Makó, M; Erdélyi, I; Sekulic, MT Biochar application in organics and ultra-violet quenching substances removal from sludge dewatering leachate for algae production(2021)
14799 Medeiros, DCCD; Chelme-Ayala, P; El-Din, MG Sludge-based activated biochar for adsorption treatment of real oil sands process water: Selectivity of naphthenic acids, reusability of spent biochar, leaching potential, and acute toxicity removal(2023)
Scroll