Knowledge Agora



Similar Articles

Title Chemically activated hydrochars as catalysts for the treatment of HTC liquor by catalytic wet air oxidation
ID_Doc 14418
Authors de Mora, A; de Tuesta, JLD; Pariente, MI; Segura, Y; Puyol, D; Castillo, E; Lissitsyna, K; Melero, JA; Martínez, F
Title Chemically activated hydrochars as catalysts for the treatment of HTC liquor by catalytic wet air oxidation
Year 2024
Published
Abstract Hydrothermal carbonization (HTC) is a highly efficient and valuable technology for treating wet solid wastes and producing solid carbon-based materials named hydrochar. In this work, a hydrochar coming from the HTC of an anaerobic digestion sludge of wastewater treatment plant was used to assess the influence of several activation agents, a base (KOH) and different chloride salts (FeCl3, ZnCl2, and CuCl2) with the exact molar quantities, to develop materials with enhanced surface area and potential inclusion of metal active species for application in wet air oxidation processes. The KOH as an activating agent increased the surface area of hydrochar up to ca. 1000 m2/g of BET surface area. The employment of CuCl2 and FeCl3 as activating agents allows Cu- and Fe-rich doped materials of remarkable surface areas with 49.1 and 42.5 wt% of each metal, respectively. Likewise, the catalytic behavior of the different synthesized carbon-based materials as metal-free and metal-doped catalysts was evaluated for the Catalytic Wet Air Oxidation (CWAO) of a HTC aqueous liquor from a HTC process of animal manure to produce a valuable stream of higher biochemical methane potential in anaerobic digestion. CWAO effluents increased the proportion of carboxylic acids as final by-products due to the oxidation of more complex organic compounds of the initial effluent (ketones, phenols, aromatics and olefins). The CWAO treatments improve the anaerobic digestion rate in biochemical methane potential tests, although the methane production was limited by the lower TOC concentration of the treated streams after CWAO. This research contributes to developing sustainable and efficient strategies for the HTC-liquor treatment, using its solid hydrochar as catalysts, closing the loop of a Circular Economy.
PDF https://doi.org/10.1016/j.cattod.2023.114462

Similar Articles

ID Score Article
10800 Wu, L; Wei, W; Wang, DB; Ni, BJ Improving nutrients removal and energy recovery from wastes using hydrochar(2021)
3639 Dhull, SB; Rose, PK; Rani, J; Goksen, G; Bains, A Food waste to hydrochar: A potential approach towards the Sustainable Development Goals, carbon neutrality, and circular economy(2024)
18388 Ischia, G; Fiori, L; Gao, LH; Goldfarb, JL Valorizing municipal solid waste via integrating hydrothermal carbonization and downstream extraction for biofuel production(2021)
12984 Rodriguez-Narvaez, OM; Nadarajah, K; Suarez-Toriello, VA; Bandala, ER; Goonetilleke, A Engineered hydrochar production methodologies, key factors influencing agriculture wastewater treatment, and life cycle analysis: A critical review(2023)
13762 Pan, TY; Guo, ZC; Zhang, XH; Feng, L Hydrothermal carbonization of biomass waste and application of produced hydrochar in organic pollutants removal(2024)
10743 Mahata, S; Periyavaram, SR; Akkupalli, NK; Srivastava, S; Matli, C A review on Co-Hydrothermal carbonization of sludge: Effect of process parameters, reaction pathway, and pollutant transport(2023)
12931 Allouss, D; Dupont, A; Achouri, IE; Abatzoglou, N Hydrothermal conversion of Cu-laden biomass to one-step doped hydrochar used as a potential adsorbent for 2-nitrophenol removal(2024)
11129 Seyedi, S; Venkiteshwaran, K; Zitomer, D Current status of biomethane production using aqueous liquid from pyrolysis and hydrothermal liquefaction of sewage sludge and similar biomass(2021)Reviews In Environmental Science And Bio-Technology, 20, 1
24555 Patel, S; Marzbali, MH; Hakeem, IG; Veluswamy, G; Rathnayake, N; Nahar, K; Agnihotri, S; Bergmann, D; Surapaneni, A; Gupta, R; Sharma, A; Shah, KL Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption(2023)
12650 Mlonka-Medrala, A; Sieradzka, M; Magdziarz, A Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction(2022)
Scroll