Knowledge Agora



Similar Articles

Title Removal of heavy metals from contaminated water using industrial wastes containing calcium and magnesium
ID_Doc 14428
Authors Guérin, T; Oustriére, N; Bulteel, D; Betrancourt, D; Ghinet, A; Malladi, S; Kaleo-Bioh, JGG; Blanc-Brude, A; Pappoe, A; Waterlot, C
Title Removal of heavy metals from contaminated water using industrial wastes containing calcium and magnesium
Year 2022
Published
Abstract Two industrial wastes (IW1 and IW2) were investigated as potential sorbents to retain cadmium and lead from contaminated water. The sorption experiments have been conducted through lab-engineered cartridge filtration system in order to get as close as possible to industrial processes. The effectiveness of IW1 and IW2 were compared to that of activated charcoal Norit (R) (AC), the best-known matrix for its excellent retention capacity. The sorption isotherms of metals on the three solid sorbents (IW1, IW2 and AC) were built, and then mathematically modelled. Free Gibbs energy (& UDelta;G) of the sorption processes as well as the equilibrium parameter (R-L) have been calculated for each pollutant-sorbent couple. The study revealed that: i) for cadmium sorption, IW2 was much more effective than IW1 and especially than AC (18-fold higher in term of maximal sorption capacity); ii) if IW2 was slightly less effective than AC to retain lead, it can be still considered as an interesting sorbent due to its low cost; iii) the sorption of cadmium was as spontaneous on AC as on IW1, and almost half as much on IW2; iv) regarding lead retention, the sorption on the three sorbents was spontaneous; (v) the retention of cadmium and lead was mainly explained by precipitation since otavite, cerussite and hydrocerussite were identified and characterized by X-ray diffraction of used sorbents. The study showed that the industrial wastes studied stood out as new efficient materials with sorption power equal to or greater than the reference material AC. The prospect of a new generation of industrial wastes with lasting efficiency as contaminated water depollution agents comes at a key moment in the search for new perspectives in the circular economy.
PDF http://manuscript.elsevier.com/S0959652622001159/pdf/S0959652622001159.pdf

Similar Articles

ID Score Article
19590 Likus, M; Komorowska-Kaufman, ML; Pruss, A; Marzec, M; Bajda, T Sorption properties of groundwater treatment residuals containing iron oxides(2023)Journal Of Environmental Chemical Engineering, 11.0, 5
14679 Bulgariu, D; Nemes, L; Ahmad, I; Bulgariu, L Isotherm and Kinetic Study of Metal Ions Sorption on Mustard Waste Biomass Functionalized with Polymeric Thiocarbamate(2023)Polymers, 15, 10
19733 Jadaa, W Wastewater Treatment Utilizing Industrial Waste Fly Ash as a Low-Cost Adsorbent for Heavy Metal Removal: Literature Review(2024)Clean Technologies, 6.0, 1
23911 Chwastowski, J; Guzik, M; Bednarz, S; Staron, P Upcycling Waste Streams from a Biorefinery Process-A Case Study on Cadmium and Lead Biosorption by Two Types of Biopolymer Post-Extraction Biomass(2023)Molecules, 28, 17
9956 Simón, D; Palet, C; Costas, A; Cristóbal, A Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents(2022)Water, 14.0, 20
9483 Dias, M; Pinto, J; Henriques, B; Figueira, P; Fabre, E; Tavares, D; Vale, C; Pereira, E Nutshells as Efficient Biosorbents to Remove Cadmium, Lead, and Mercury from Contaminated Solutions(2021)International Journal Of Environmental Research And Public Health, 18.0, 4
12975 Saavedra, MI; Miñarro, MD; Angosto, JM; Fernández-López, JA Reuse potential of residues of artichoke (Cynara scolymus L.) from industrial canning processing as sorbent of heavy metals in multimetallic effluents(2019)
19529 Chero-Osorio, S; Chavez, DM; Vega, A; Morales, A; Gamarra, C; Rodriguez-Reyes, JCF Reutilization of pyrite-rich alkaline leaching tailings as sorbent must consider the interplay of sorption and desorption(2021)
24868 Bianchi, E; Coppi, A; Nucci, S; Antal, A; Berardi, C; Coppini, E; Fibbi, D; Del Bubba, M; Gonnelli, C; Colzi, I Closing the loop in a constructed wetland for the improvement of metal removal: the use of Phragmites australis biomass harvested from the system as biosorbent(2021)Environmental Science And Pollution Research, 28, 9
22055 Abidli, A; Huang, YF; Ben Rejeb, Z; Zaoui, A; Park, CB Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future(2022)
Scroll