Knowledge Agora



Similar Articles

Title Bibliometric analysis and an overview of the application of the non-precious materials for pyrolysis reaction of plastic waste
ID_Doc 14484
Authors Nabgan, W; Ikram, M; Alhassan, M; Owgi, AHK; Tran, TV; Parashuram, L; Nordin, AH; Djellabi, R; Jalil, AA; Medina, F; Nordin, ML
Title Bibliometric analysis and an overview of the application of the non-precious materials for pyrolysis reaction of plastic waste
Year 2023
Published Arabian Journal Of Chemistry, 16, 6
Abstract Huge plastic consumption and depletion of fossil fuels are at the top of the world's envi-ronmental and energy challenges. The scientific community has tackled these issues through differ-ent approaches. Catalytic pyrolysis of plastic wastes to valuable products has been proved as a sustainable route which fits with the circular economy aspects. The design of catalytic materials is the central factor for performing the catalytic conversion of plastic wastes. This review aims to conduct a Bibliometric analysis of the pyrolysis of plastic wastes and non-precious-based catalysts by mapping research studies over the last fifty years. The analysis was developed via VOSviewer and RStudio tools. It showed the historical progress regarding plastic waste pyrolysis to produce valu-able products and chemicals worldwide. The research shows that the top five countries with the highest citations and publications in this field were Spain, China, England, the USA and India. The Journal of Analytical and Applied Pyrolysis had the most comprehensive coverage of plastic waste. The relationship between the catalyst and the mechanism of plastic waste can influence the production yield and selectivity. The research gap and underrepresented research topics were iden-tified, and previous research studies on developing non-precious-based catalysts that were most rel-evant to the current topic were reviewed and discussed. The challenges and perspectives on catalyst preparation and development for material complexity were critically discussed. Challenges of pre-vious studies and directions for future research were provided. This report might guide the reader to take a general look at plastic waste valorization by pyrolysis and easily understand the main chal-lenges. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF https://doi.org/10.1016/j.arabjc.2023.104717

Similar Articles

ID Score Article
12454 Peng, YJ; Wang, YP; Ke, LY; Dai, LL; Wu, QH; Cobb, K; Zeng, Y; Zou, RG; Liu, YH; Ruan, RG A review on catalytic pyrolysis of plastic wastes to high-value products(2022)
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
29061 Biakhmetov, B; Dostiyarov, A; Ok, YS; You, SM A review on catalytic pyrolysis of municipal plastic waste(2023)Wiley Interdisciplinary Reviews-Energy And Environment, 12.0, 6
21396 Armenise, S; SyieLuing, W; Ramírez-Velásquez, JM; Launay, F; Wuebben, D; Ngadi, N; Rams, J; Muñoz, M Plastic waste recycling via pyrolysis: A bibliometric survey and literature review(2021)
19620 Tan, KQ; Ahmad, MA; Da Oh, W; Low, SC Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis(2023)
10292 Soni, VK; Singh, G; Vijayan, BK; Chopra, A; Kapur, GS; Ramakumar, SSV Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review(2021)Energy & Fuels, 35, 16
5931 Dai, LL; Zhou, N; Lv, YC; Cheng, YL; Wang, YP; Liu, YH; Cobb, K; Chen, PL; Lei, HW; Ruan, RG Pyrolysis technology for plastic waste recycling: A state-of-the-art review(2022)
14085 Shan, TL; Wang, KS; Li, Y; Gong, Z; Wang, CS; Tian, XL Study on the kinetics of catalytic pyrolysis of single and mixed waste plastics by spent FCC catalyst(2024)Journal Of Thermal Analysis And Calorimetry, 149, 4
69576 Hussain, I; Ganiyu, SA; Alasiri, H; Alhooshani, K A state-of-the-art review on waste plastics-derived aviation fuel: Unveiling the heterogeneous catalytic systems and techno-economy feasibility of catalytic pyrolysis(2022)
19331 Kremer, I; Tomic, T; Katancic, Z; Erceg, M; Papuga, S; Vukovic, JP; Schneider, DR Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor(2021)
Scroll