Knowledge Agora



Similar Articles

Title Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system
ID_Doc 14489
Authors Verma, R; Suthar, S; Chand, N; Mutiyar, PK
Title Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system
Year 2022
Published
Abstract This study compiles the results of phycoremediation of milk processing wastewater (MPWW) and production of lipid rich Chlorella vulgaris biomass using a continuous batch system operated for 12-wks. After a 4-wks interval, a new MPWW was loaded photobioreactor to provide appropriate nutrient supply to algae. Results indicated that MPWW supported the algal growth efficiently and the maximum algal growth was recorded in the ranges of 400.36 to 421.58 mg L-1 during 4-wks of the cultivation cycle. Average reduction in total nitrogen, TN (45.82-69.18%); nitrate, NO3 (93.32-94.54%); total ammonium nitrogen, TAN (92.94-94.54%); sulphate, SO4-2 (85.13-87.34%); total phosphorus (75.09-78.78%); and biochemical oxygen demands, BOD (89.53-92.40%) was recorded during 12-wks phycoremediation of MPWW. Harvested algal biomass (dry weight basis, DW) exhibited a significant content of total sugar (45.5%) and total lipid (39.7%). The lipid profiling results indicated the presence of palmitic acid (39.9%), oleic acid (21.08%), linoleic acid (13.13%), and other C18 compounds in algal biomass, suggesting the suitability of MPWW for Chlorella vulgaris cultivations. Algal biomass exhibited a high heating value (MJ/Kg of DW) in the range of 17.3 to 25.1, comparable to other lignocellulose biomass to be used for bioenergy purposes. Results of this study indicate that MPWW could be utilized as a valuable medium for Chlorella vulgaris cultivation under a circular economy approach: wastewater treatment and bioenergy feedstock production. The effect of controlled environmental conditions on algal growth behavior and lipid composition in biomass, while using MPWW as a medium, could be investigated in future studies.
PDF

Similar Articles

ID Score Article
13991 Gogonin, AV; Shchemelinina, TN; Anchugova, EM Utilization of wastewaters as a nutrient medium for the accumulation of microalgal biomass(2022)
16013 Caetano, N; Melo, AR; Gorgich, M; Branco-Vieira, M; Martins, AA; Mata, TM Influence of cultivation conditions on the bioenergy potential and bio-compounds of Chlorella vulgaris(2020)
20109 Wang, X; Qin, ZH; Hao, TB; Ye, GB; Mou, JH; Balamurugan, S; Bin, XY; Buhagiar, J; Wang, HM; Lin, CSK; Yang, WD; Li, HY A combined light regime and carbon supply regulation strategy for microalgae-based sugar industry wastewater treatment and low-carbon biofuel production to realise a circular economy(2022)
13731 Casa, NE; Lois-Milevicich, J; Alvarez, P; Mateucci, R; Pla, MD Chlorella vulgaris cultivation using ricotta cheese whey as substrate for biomass production(2022)Journal Of Applied Phycology, 34, 2
24643 Thoré, ESJ; Schoeters, F; De Cuyper, A; Vleugels, R; Noyens, I; Bleyen, P; Van Miert, S Waste Is the New Wealth - Recovering Resources From Poultry Wastewater for Multifunctional Microalgae Feedstock(2021)
14726 Ljumovic, K; Betterle, N; Baietta, A; Ballottari, M Valorization of wastewater from industrial hydroponic cultivations using the microalgal species Chlorella vulgaris(2024)
12293 Snáchez-Zurano, A; Villar-óCos, S; Ciardi, M; Aciné-Fernnádez, FG; Fernnádez-Sevilla, JM; Lafarga, T Assessment of the mixotrophic production of Chlorella vulgaris using milk whey as a nutrient source(2024)Journal Of Applied Phycology, 36.0, 1
10750 Talapatra, N; Ghosh, UK New concept of biodiesel production using food waste digestate powder: Co-culturing algae-activated sludge symbiotic system in low N and P paper mill wastewater(2022)
25515 Dinnebier, HCF; Matthiensen, A; Michelon, W; Tápparo, DC; Fonseca, TG; Favretto, R; Steinmetz, RLR; Treichel, H; Antes, FG; Kunz, A Phycoremediation and biomass production from high strong swine wastewater for biogas generation improvement: An integrated bioprocess(2021)
23521 Esteves, AF; Soares, SM; Salgado, EM; Boaventura, RAR; Pires, JCM Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal(2022)Applied Sciences-Basel, 12, 24
Scroll