Knowledge Agora



Similar Articles

Title BIM- and GIS-Based Life-Cycle-Assessment Framework for Enhancing Eco Efficiency and Sustainability in the Construction Sector
ID_Doc 14564
Authors Zubair, MU; Ali, M; Khan, MA; Khan, A; Hassan, MU; Tanoli, WA
Title BIM- and GIS-Based Life-Cycle-Assessment Framework for Enhancing Eco Efficiency and Sustainability in the Construction Sector
Year 2024
Published Buildings, 14, 2
Abstract The world is progressing towards sustainable, eco-friendly, recyclable materials to enhance the circular economy and mitigate the issues of carbon footprint, overburdened landfills, and waste of natural resources. As increasing greenhouse gas (GHG) emissions are a major contributor towards climate change and given that the construction industry is one of the major producers of GHG emissions, it is crucial to meticulously quantify and lower its emissions, especially in the context of developing countries. This research presents a novel framework by combining advanced tools i.e., building information modeling (BIM), life-cycle assessment (LCA), geographic information systems (GISs), and quantification of embodied emissions to optimize construction's design, material-selection, operations, maintenance, and waste-management processes. The effectiveness of the proposed approach has been demonstrated with the help of a real-world case study in Islamabad, Pakistan. A building model has been generated using BIM, and a comprehensive LCA has been conducted. Additionally, GIS tools have been utilized to identify the locations and accessibility of available-waste-management facilities. Based on this data, embodied emissions related to handling and transportation of waste material to disposal facilities have been computed using mathematical analyses. Furthermore, targeted mitigation strategies have been proposed and an optimized route has been designed using GIS-based route-optimization tools along the suggested facility centers in the Islamabad region. The case study has been reassessed with alleviation strategies, and the results show that 29.35% of the materialization stage, 16.04% of the operational stage, and 21.14% of the end-of-life-phase GHG emissions can be effectively reduced. Hence, pre-evaluating the environmental degradation caused by construction projects throughout their life cycle might offer an opportunity to comprehend and reduce prospective environmental impacts.
PDF

Similar Articles

ID Score Article
6678 Wang, SQ; Wu, QQ; Yu, JP BIM-Based Assessment of the Environmental Effects of Various End-of-Life Scenarios for Buildings(2024)Sustainability, 16, 7
18885 Llatas, C; Quiñones, R; Bizcocho, N Environmental Impact Assessment of Construction Waste Recycling versus Disposal Scenarios Using an LCA-BIM Tool during the Design Stage(2022)Recycling, 7.0, 6
3322 Xue, K; Hossain, MU; Liu, M; Ma, MJ; Zhang, YZ; Hu, MQ; Chen, XY; Cao, GY BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review(2021)Sustainability, 13, 3
9216 Hao, JL; Cheng, BQ; Lu, WS; Xu, J; Wang, JJ; Bu, WC; Guo, ZP Carbon emission reduction in prefabrication construction during materialization stage: A BIM-based life-cycle assessment approach(2020)
20346 Yuan, L; Yang, B; Lu, WS; Peng, ZY Carbon footprint accounting across the construction waste lifecycle: A critical review of research(2024)
24794 Quiñones, R; Llatas, C; Montes, MV; Cortés, I A Multiplatform BIM-Integrated Construction Waste Quantification Model during Design Phase. The Case of the Structural System in a Spanish Building(2021)Recycling, 6, 3
16571 De Wolf, C; Hoxha, E; Fivet, C Comparison of environmental assessment methods when reusing building components: A case study(2020)
20595 Hossain, MU; Ng, ST Influence of waste materials on buildings' life cycle environmental impacts: Adopting resource recovery principle(2019)
29032 Mostert, C; Sameer, H; Glanz, D; Bringezu, S Climate and resource footprint assessment and visualization of recycled concrete for circular economy(2021)
13451 Jayawardana, J; Sandanayake, M; Jayasinghe, JASC; Kulatunga, AK; Zhang, GM A comparative life cycle assessment of prefabricated and traditional construction - A case of a developing country(2023)
Scroll