Knowledge Agora



Similar Articles

Title Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications
ID_Doc 14692
Authors Samantaray, PK; Little, A; Haddleton, DM; McNally, T; Tan, BW; Sun, ZY; Huang, WJ; Ji, Y; Wan, CY
Title Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications
Year 2020
Published Green Chemistry, 22, 13
Abstract The concerns about the accumulating plastic waste pollution have stimulated the rapid development of bioplastics, in particular biodegradable bioplastics derived from renewable resources. Driven by a low carbon circular economy, bioplastics production is estimated to reach a 40% share of the plastics market by 2030 (Bioplastics Market Data, 2018). It is expected to substitute petrochemical-based plastics in many applications, from food packaging, pharmaceuticals, electronics, agriculture to textiles. The current biodegradable bioplastics have met challenges in competing with engineering polymers such as PET and Nylon in terms of processing capacity at the industry scale, mechanical robustness, thermal resistance, and stability. Poly(glycolic acid) (PGA) has a similar chemical structure to PLA but without the methyl side group, which allows the polymer chains to pack together tightly and results in a high degree of crystallinity (45-55%), high thermal stability (T-m= 220-230 degrees C), exceptionally high gas barrier (3 times higher than EVOH), as well as high mechanical strength (115 MPa) and stiffness (7 GPa). Meanwhile, PGA is rapidly biodegradable and 100% compostable, showing a similar biodegradation profile to cellulose. To date, PGA has been mainly used in the form of copolymers, such as poly(lactic-co-glycolic acid) (PLGA). Its unique properties have often been overlooked and are yet to be explored. This is caused by its intrinsic characteristics such as high hydrophilicity, rapid degradation, insolubility in most organic solvents and brittleness that have hindered its practical applications. Here we introduced the synthetic chemistry, processing methods, modification, and applications of PGA, aiming to provide a critical discussion about the technical challenges, development opportunities, and solutions for PGA-based materials. The future direction and perspectives for high-performance PGA are proposed. Given its synthesis diversity and unique properties, PGA shows great potential to substitute engineering petrochemical-based polymers for high temperature and high gas barrier packaging applications.
PDF

Similar Articles

ID Score Article
25397 Dalton, B; Bhagabati, P; De Micco, J; Padamati, RB; O'Connor, K A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications(2022)Catalysts, 12, 3
6593 Abu-Thabit, NY; Pérez-Rivero, C; Uwaezuoke, OJ; Ngwuluka, NC From waste to wealth: upcycling of plastic and lignocellulosic wastes to PHAs(2022)Journal Of Chemical Technology And Biotechnology, 97, 12
13662 Carrodeguas, LP; Chen, TTD; Gregory, GL; Sulley, GS; Williams, CK High elasticity, chemically recyclable, thermoplastics from bio-based monomers: carbon dioxide, limonene oxide and ε-decalactone(2020)Green Chemistry, 22, 23
6178 Sahu, P; Thorbole, A; Gupta, RK Polyesters Using Bioderived Furandicarboxylic Acid: Recent Advancement and Challenges toward Green PET(2024)Acs Sustainable Chemistry & Engineering, 12, 18
63497 Mendieta, CM; González, G; Vallejos, ME; Area, MC Bio-polyethylene Furanoate (Bio-PEF) from Lignocellulosic Biomass Adapted to the Circular Bioeconomy(2022)Bioresources, 17, 4
19996 Shi, CX; Quinn, EC; Diment, WT; Chen, EYX Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy(2024)Chemical Reviews, 124.0, 7
18935 Goksu, YA Enhancing the Sustainability of Poly(Lactic Acid) (PLA) Through Ketene-Based Chain Extension(2024)Journal Of Polymers And The Environment, 32.0, 8
29643 Wang, SX; Muiruri, JK; Soo, XYD; Liu, S; Thitsartarn, W; Tan, BH; Suwardi, A; Li, Z; Zhu, Q; Loh, XJ Bio-Polypropylene and Polypropylene-based Biocomposites: Solutions for a Sustainable Future(2023)Chemistry-An Asian Journal, 18.0, 2
23701 Adeleye, AT; Odoh, CK; Enudi, OC; Banjoko, OO; Osiboye, OO; Odediran, ET; Louis, H Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass(2020)
13253 Zytner, P; Kumar, D; Elsayed, A; Mohanty, A; Ramarao, BV; Misra, M A review on polyhydroxyalkanoate (PHA) production through the use of lignocellulosic biomass(2023)Rsc Sustainability, 1, 9
Scroll