Knowledge Agora



Similar Articles

Title A comparative life cycle assessment of recycling waste concrete powder into CO2-Capture products
ID_Doc 14750
Authors Kravchenko, E; Sauerwein, M; Besklubova, S; Ng, CWW
Title A comparative life cycle assessment of recycling waste concrete powder into CO2-Capture products
Year 2024
Published
Abstract Waste concrete powder (WCP), a byproduct of construction and demolition (C&D), currently has a low degree of recycling despite its potential for environmentally friendly applications. WCP can serve as a valuable substitute for cement, offering advantages for resource conservation and carbon sequestration. However, there are very few studies that quantitatively assess the environmental impact of incorporating WCP into the circular economy as a secondary material instead of disposing of it. The energy-intensive processing of WCP raises questions about the optimal carbonation time using available equipment. This study aims to fill this knowledge gap by employing carbon footprint and life cycle assessments (LCA) to optimize WCP recycling. Three recycling WCP scenarios are analyzed. The first scenario involved the conversion of WCP into compacts that absorb CO2 during the carbonation process. The results of the first scenario revealed that the optimal carbonation time for WCP compacts was 8 h, during which 42.7 kg CO2-e per tonne of WCP compacts was sequestered. The total global warming potential (GWP) was -4.22 kgCO2-e, indicating a carbon-negative recycling process. In the second and third scenarios, LCA was conducted to compare the use of carbonated and uncarbonated WCP as a partial replacement for cement in concrete. In these scenarios, it was found that uncarbonated WCP is a more effective solution for reducing the carbon footprint of traditional concrete mixes, achieving a significant 16% reduction of GWP when 20% of cement is replaced. Conversely, using carbonated WCP as a partial cement replacement in concrete mixtures shows limited potential for CO2 uptake. The sensitivity analysis reveals that the carbon footprint of the WCP compacts production process is strongly influenced by the electricity supplier used.
PDF

Similar Articles

ID Score Article
4395 Martin, C; Manu, E; Hou, PK; Adu-Amankwah, S Circular economy, data analytics, and low carbon concreting: A case for managing recycled powder from end-of-life concrete(2023)
19784 Zhang, N; Xi, B; Li, JB; Liu, L; Song, GH Utilization of CO2 into recycled construction materials: A systematic literature review(2022)Journal Of Material Cycles And Waste Management, 24.0, 6
17992 Munir, Q; Lahtela, V; Kärki, T; Koivula, A Assessing life cycle sustainability: A comprehensive review of concrete produced from construction waste fine fractions(2024)
19592 Zhang, CB; Hu, MM; van der Meide, M; Di Maio, F; Yang, XN; Gao, XF; Li, K; Zhao, HL; Li, C Life cycle assessment of material footprint in recycling: A case of concrete recycling(2023)
19685 Shivaprasad, KN; Yang, HM; Singh, JK A path to carbon neutrality in construction: An overview of recent progress in recycled cement usage(2024)
13962 Zhang, XH; Wu, ZM; Xie, J; Hu, X; Shi, CJ Trends toward lower-carbon ultra-high performance concrete (UHPC) - A review(2024)
15452 Moreno-Juez, J; Vegas, IJ; Gebremariam, AT; Garcia-Cortes, V; Di Maio, F Treatment of end-of-life concrete in an innovative heating-air classification system for circular cement-based products(2020)
5475 Fort, J; Cerny, R Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios(2020)
17362 Backes, JG; Del Rosario, P; Petrosa, D; Traverso, M; Hatzfeld, T; Günther, E Building Sector Issues in about 100 Years: End-Of-Life Scenarios of Carbon-Reinforced Concrete Presented in the Context of a Life Cycle Assessment, Focusing the Carbon Footprint(2022)Processes, 10, 9
8679 Al-Janabi, A; Black, L; Adu-Amankwah, S Improvement of Recycled Cement Powder Characteristics from C&DWastes by Accelerated CO2 Curing and/or Heat Treatment(2024)
Scroll