Knowledge Agora



Similar Articles

Title Food waste compost and digestate as novel fertilizers: Impacts on antibiotic resistome and potential risks in a soil-vegetable system
ID_Doc 14996
Authors Yang, J; Xiang, JY; Goh, SG; Xie, Y; Nam, OC; Gin, KYH; He, YL
Title Food waste compost and digestate as novel fertilizers: Impacts on antibiotic resistome and potential risks in a soil-vegetable system
Year 2024
Published
Abstract As a novel agricultural practice, the reuse of food waste compost and digestate as fertilizers leads to a circular economy, but inevitably introduces bio-contaminants such as antibiotic resistance genes (ARGs) into the agroecosystem. Moreover, heavy metal and antibiotic contamination in farmland soil may exert selective pressures on the evolution of ARGs, posing threats to human health. This study investigated the fate, influencing mechanisms and potential risks of ARGs in a soil-vegetable system under different food waste fertilization and remediation treatments and soil contamination conditions. Application of food waste fertilizers significantly promoted the pakchoi growth, but resulted in the spread of ARGs from fertilizers to pakchoi. A total of 56, 80, 84, 41, and 73 ARGs, mobile genetic elements (MGEs) and metal resistance genes (MRGs) were detected in the rhizosphere soil (RS), bulk soil (BS), control soil (CS), root endophytes (RE), and leaf endophytes (LE), respectively. Notably, 7 genes were shared in the above five subgroups, indicating a specific soil-root-endophytes transmission pathway. 36 genes were uniquely detected in the LE, which may originate from airborne ARGs. The combined application of biochar and fertilizers reduced the occurrence of ARGs and MGEs to some extent, showing the remediation effect of biochar. The average abundance of ARGs in the RS, BS and CS was 3.15 x 10-2, 1.31 x 10-2 and 2.35 x 10-1, respectively. Rhizosphere effects may reduce the abundance of ARGs in soil. The distribution pattern of ARGs was influenced by the types of soil, endophyte and contaminant. MGEs is the key driver shaping ARGs dynamics. Soil properties and pakchoi growth status may affect the bacterial composition, and consequently regulate ARGs fate, while endophytic ARGs were more impacted by biotic factors. Moreover, the average daily doses of ARGs from pakchoi consumption is 107-109 copies/d/kg, and its potential health risks should be emphasized.
PDF

Similar Articles

ID Score Article
26804 Sanz, C; Casado, M; Navarro-Martin, L; Cañameras, N; Carazo, N; Matamoros, V; Bayona, JM; Piña, B Implications of the use of organic fertilizers for antibiotic resistance gene distribution in agricultural soils and fresh food products. A plot-scale study(2022)
23650 Sanz, C; Casadoi, M; Tadic, D; Pastor-Lopez, EJ; Navarro-Martin, L; Parera, J; Tugues, J; Ortiz, CA; Bayona, JM; Pina, B Impact of organic soil amendments in antibiotic levels, antibiotic resistance gene loads, and microbiome composition in corn fields and crops(2022)
10792 Major, N; Jechalke, S; Nesme, J; Ban, SG; Cerne, M; Sorensen, SJ; Ban, D; Grosch, R; Schikora, A; Schierstaedt, J Influence of sewage sludge stabilization method on microbial community and the abundance of antibiotic resistance genes(2022)
26341 Mickan, BS; Ren, AT; Buhlmann, CH; Ghadouani, A; Solaiman, ZM; Jenkins, S; Pang, JY; Ryan, MH Closing the circle for urban food waste anaerobic digestion: The use of digestate and biochar on plant growth in potting soil(2022)
14326 Christou, A; Agüera, A; Bayona, JM; Cytryn, E; Fotopoulos, V; Lambropoulou, D; Manaia, CM; Michael, C; Revitt, M; Schröder, P; Fatta-Kassinos, D The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review(2017)
Scroll