Knowledge Agora



Similar Articles

Title Effect of extraction method on the structure and bioactivity of polysaccharides from activated sludge
ID_Doc 15039
Authors Liu, J; Zhang, Z; Deng, YF; Chen, GH
Title Effect of extraction method on the structure and bioactivity of polysaccharides from activated sludge
Year 2024
Published
Abstract Resource recovery is a pivotal facet of waste activated sludge treatment, particularly within the framework of carbon neutrality and the circular economy. Polysaccharides are emerging as a valuable resource from waste activated sludge, and the choice of extraction method affects the properties of the polysaccharides, which is of utmost importance for subsequent application. This investigation examined the effects of six extraction methods (i.e., acidic, alkaline, ultrasonication, hot-water, microwave, and electric treatments) on the yield, chemical composition, structural characteristics, and bioactivities of polysaccharides extracted from sludge. For each extraction method, two operational parameters, namely the treatment time and strength (e.g., the acid and alkali concentration), were initially optimized in terms of the polysaccharide yield. The polysaccharide yield varied from 1.03 +/- 0.12 % to 5.34 +/- 0.10 % adopting the extraction methods under optimized conditions, and the alkaline extraction method had the highest yield of polysaccharides with a treatment time of 120 min and NaOH concentration of 1 %. At least one polysaccharide fraction was successfully purified from the crude polysaccharide of each extraction method. The compositions and structures of these fractions, including carbohydrate, protein, sulfate, uronic acid contents, and monosaccharide compositions, were determined. Carbohydrate was the dominant component, with the hot-water-2 fraction having the highest carbohydrate content (77.90 % +/- 2.02 %). Monosaccharides in the polysaccharides were measured, with mannose, rhamnose, glucose, and xylose being found in all fractions, whereas ribose was exclusively found in the acid-1 fraction. The molecular weights of these fractions ranged between 1.60 x 104 Da and 7.11 x 106 Da. Furthermore, the bioactivities of the polysaccharides, encompassing five anti-oxidant and three anti-coagulant properties, were assessed, with the ultrasonication-1 fraction having superior performance in seven of the assays. Finally, the association among the fractions in terms of composition and bioactivity was assessed adopting cluster analysis and regression methods. The findings underscore the effect of the extraction method on the properties of polysaccharides extracted from sludge, thereby providing valuable insights for the prospective applications of polysaccharides.
PDF

Similar Articles

ID Score Article
16567 Gusiatin, MZ; Kulikowska, D; Bernat, K Municipal Sewage Sludge as a Resource in the Circular Economy(2024)Energies, 17, 11
14458 Yang, N; Zhang, Y; Yang, SC Structural characteristics of organics released from sludge pretreatment and their performance in the synthesis of biomass plastics(2024)
27062 Núñez, D; Oulego, P; Collado, S; Riera, FA; Díaz, M Separation and purification techniques for the recovery of added-value biocompounds from waste activated sludge. A review(2022)
29361 Zeng, RG; Shi, C; Hao, LT; Huang, A; Yuan, T; Zhang, N A review of alginate-like extracellular polymers from excess sludge: Extraction, characterization, and potential application(2023)
21610 Feng, CJ; Lotti, T; Canziani, R; Lin, YM; Tagliabue, C; Malpei, F Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review(2021)
21464 Traina, F; Corsino, S; Torregrossa, M; Viviani, G Biopolymer Recovery from Aerobic Granular Sludge and Conventional Flocculent Sludge in Treating Industrial Wastewater: Preliminary Analysis of Different Carbon Routes for Organic Carbon Utilization(2023)Water, 15.0, 1
8045 Racek, J; Sevcik, J; Chorazy, T; Kucerik, J; Hlavinek, P Biochar - Recovery Material from Pyrolysis of Sewage Sludge: A Review(2020)Waste And Biomass Valorization, 11, 7
16261 Wisniowska, E; Kowalczyk, M Recovery of Cellulose, Extracellular Polymeric Substances and Microplastics from Sewage Sludge: A Review(2022)Energies, 15, 20
30025 Gopinath, A; Divyapriya, G; Srivastava, V; Laiju, AR; Nidheesh, P; Kumar, MS Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment(2021)
13509 Mayilswamy, N; Nighojkar, A; Edirisinghe, M; Sundaram, S; Kandasubramanian, B Sludge-derived biochar: Physicochemical characteristics for environmental remediation(2023)Applied Physics Reviews, 10, 3
Scroll