Knowledge Agora



Similar Articles

Title Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry
ID_Doc 1506
Authors Cosentino, I; Liendo, F; Arduino, M; Restuccia, L; Bensaid, S; Deorsola, F; Ferro, GA
Title Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry
Year 2020
Published
Abstract This paper calls into question the effects of incorporating nano calcium carbonate (CaCO3) particles in cement mortars, as they are interesting additive materials already successfully tested as cement nanofiller. These nanoparticles could potentially be prepared through the carbonation route using CO2 from combustion gases from the cement industry. This could enable a circular-economy approach for carbon capture and its re-use within the cement industry, in a sustainable and synergistic manner. In this study, part of the cement content was substituted with commercial nano CaCO3 particles to investigate their effects on the flexural and compressive strength of the resulting cement mortars, after curing for 7 and 28 days. Decreasing the cement content could lead to a reduction in the carbon footprint of cement, which is responsible for approximately 8% of global carbon dioxide emissions. Preliminary results using synthesized CaCO3 particles as nanofillers showed that, after 7 days of curing, mechanical properties of cement mortars improved. This indicates that hydration reaction was accelerated since CaCO3 acts as seeding for this reaction. By contrast, after 28 days of curing, no major improvement was observed. A higher content of calcium carbonate nanoparticles may have reduced the filler effect of these particles due to aggregation phenomena. In the present work, the effects of commercial nano CaCO3 particles on cement hydration were investigated. Mechanical tests showed promising results both after 7 and 28 days of curing. This could lead to the reduction of the carbon footprint of cement manufacturing and produce increasingly better performing building materials. Thus, the development of a circular economy in the cement industry could be achieved. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of MedFract1 organizers
PDF https://doi.org/10.1016/j.prostr.2020.06.019

Similar Articles

ID Score Article
25210 Cosentino, I; Restuccia, L; Ferro, GA; Liendo, F; Deorsola, F; Bensaid, S Evaluation of the mechanical properties of cements with fillers derived from the CO2 reduction of cement plants(2019)
23713 Batuecas, E; Liendo, F; Tommasi, T; Bensaid, S; Deorsola, FA; Fino, D Recycling CO2 from flue gas for CaCO3 nanoparticles production as cement filler: A Life Cycle Assessment(2021)
64355 Sanjuán, MA; Argiz, C; Mora, P; Zaragoza, A Carbon Dioxide Uptake in the Roadmap 2050 of the Spanish Cement Industry(2020)Energies, 13, 13
27029 McDonald, LJ; Afzal, W; Glasser, FP Evidence of scawtite and tilleyite formation at ambient conditions in hydrated Portland cement blended with freshly-precipitated nano-size calcium carbonate to reduce greenhouse gas emissions(2022)
29318 Menéndez, E; Argiz, C; Recino, H; Sanjuán, MA Characterization of Mortars Made with Coal Ashes Identified as a Way Forward to Mitigate Climate Change(2022)Crystals, 12.0, 4
4782 Soares, EG; Castro-Gomes, J; Sitarz, M; Zdeb, T; Hager, I; Hassan, K; Al-Kuwari, MS Feasibility for co-utilisation of Carbonated Reactive Magnesia Cement (CRMC) and industrial wastes in circular economy and CO2 mineralisation(2022)
15007 Dwivedi, A; Bollam, R; Gupta, S Enhancement of engineering properties of cement mortars with masonry construction and demolition fines via carbon dioxide utilization, storage and chemical treatment(2024)
9681 Frías, M; de la Villa, RV; García, R; Martínez, S; Villar, E; Vegas, I Effect of a high content in activated carbon waste on low clinker cement microstructure and properties(2018)
27515 Suescum-Morales, D; Jiménez, JR; Fernández-Rodríguez, JM Use of Carbonated Water as Kneading in Mortars Made with Recycled Aggregates(2022)Materials, 15.0, 14
19000 Duendar, B; Tugluca, MS; Ilcan, H; Sahin, O; Sahmaran, M The effects of various operational- and materials-oriented parameters on the carbonation performance of low-quality recycled concrete aggregate(2023)
Scroll