Knowledge Agora



Similar Articles

Title Optimal Lot-Sizing Decisions for a Remanufacturing Production System under Spare Parts Supply Disruption
ID_Doc 15082
Authors Ropi, NM; Hishamuddin, H; Wahab, DA; Jauhari, WA; Rashid, FAA; Khamis, NK; Mohamed, IF; Sabri, MAM; Abu Mansor, MR
Title Optimal Lot-Sizing Decisions for a Remanufacturing Production System under Spare Parts Supply Disruption
Year 2023
Published Mathematics, 11, 19
Abstract Remanufacturing is one of the ways forward for product recovery initiatives and for maintaining sufficient production flow to satisfy customer demand by providing high-quality goods with a combination of new and return parts through a circular economy. Recently, manufacturers have been progressively incorporating remanufacturing processes, making their supply chains vulnerable to disruptions. One of the main disruptions that occurs in remanufacturing systems is the shortage of spare parts supply, which results in unexpected delays in the remanufacturing process and could eventually result in a possible loss of sales. In the event of such potential disruptions, remanufacturing facilities must manage their supply chains in an effective and optimal manner such that the negative impact of disruptions to their business can be minimised. In this study, a two-stage production-inventory system was analysed by developing a cost-minimisation model that focuses on the recovery schedule after the occurrence of a disruption in sourcing spare parts for a remanufacturer's production cycle. The developed model was solved using the branch-and-bound algorithm, where the experimental results demonstrated that the model provides effective solutions. Through numerical experiments, results indicated that the optimal recovery schedule and the number of recovery cycles are considerably dependent on the disruption time, lost sales and backorder costs. A sensitivity analysis showed that the lost sales option seems to be more effective than the backorder sales option in optimising the system's overall cost due to unmet demand, which becomes lost sales when serviceable items are reduced, thereby shortening recovery time. Furthermore, a case study revealed that a manufacturer's response to disruption is highly influenced by the spare part costs and overall recovery costs as well as the supplier's readiness level. The proposed model could assist managers in deciding the optimal production strategy whilst providing interesting managerial insights into vital spare parts recovery issues when disruption strikes.
PDF

Similar Articles

ID Score Article
3382 Reddy, KN; Kumar, A Capacity investment and inventory planning for a hybrid manufacturing - remanufacturing system in the circular economy(2021)International Journal Of Production Research, 59, 8
14253 Dominguez, R; Cannella, S; Framinan, JM Remanufacturing configuration in complex supply chains * , **(2021)
21083 Zhou, Y; Liu, XQ; Wong, KH Remanufacturing Policies Options for a Closed-Loop Supply Chain Network(2021)Sustainability, 13.0, 12
70931 AlArjani, A; Miah, MM; Uddin, MS; Mashud, AM; Wee, HM; Sana, SS; Srivastava, HM A Sustainable Economic Recycle Quantity Model for Imperfect Production System with Shortages(2021)Journal Of Risk And Financial Management, 14.0, 4
19919 Goltsos, TE; Ponte, B; Wang, SX; Liu, Y; Naim, MM; Syntetos, AA The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems(2019)International Journal Of Production Research, 57.0, 23
27499 Ferraro, S; Baffa, F; Cantini, A; Leoni, L; De Carlo, F; Campatelli, G Exploring remanufacturing conveniency: An economic and energetic assessment for a closed-loop supply chain of a mechanical component(2024)
26382 Karunakaran, SK; Ramasamy, N; Anand, MD; Santhi, N Factor analysis of environmental effects in circular closed-loop supply chain network design and modelling under uncertainty in the manufacturing industry(2024)Environmental Quality Management, 34, 1
19149 Chhetri, P; Nikkhah, MJ; Soleimani, H; Shahparvari, S; Shamlou, A Closed supply network modelling for end-of-life ship remanufacturing(2022)International Journal Of Logistics Management, 33.0, 2
Scroll