Knowledge Agora



Similar Articles

Title Material recovery from electronic waste using pyrolysis: Emissions measurements and risk assessment
ID_Doc 15159
Authors Sahle-Demessie, E; Mezgebe, B; Dietrich, J; Shan, YG; Harmon, S; Lee, CC
Title Material recovery from electronic waste using pyrolysis: Emissions measurements and risk assessment
Year 2021
Published Journal Of Environmental Chemical Engineering, 9, 1
Abstract Electronic waste (e-waste) generation has been growing in volume worldwide, and the diversity of its material composition is increasing. Sustainable management of this material is critical to achieving a circular-economy and minimizing environmental and public health risks. This study's objective was to investigate the use of pyrolysis as a possible technique to recover valuable materials and energy from different components of e-waste as an alternative approach for limiting their disposal to landfills. The study includes investigating the potential environmental impact of thermal processing of e-waste. The mass loss and change in e-waste chemicals during pyrolysis were also considered. The energy recovery from pyrolysis was made in a horizontal tube furnace under anoxic and isothermal conditions of selected temperatures of 300 degrees C, 400 degrees C, and 500 degrees C. Critical metals that include the rare earth elements and other metals (such as In, Co, Li) and valuable metals (Au, Ag, Pt group) were recovered from electronic components. Pyrolysis produced liquid and gas mixtures of organic compounds that can be used as fuels. Still, the process also emitted particulate matter and semi-volatile organic products, and the remaining ash contained leachable pollutants. Furthermore, toxicity characteristics leaching procedure (TCLP) of e-waste and partly oxidized products were conducted to measure the levels of pollutants leached before and after pyrolysis at selected temperatures. TCLP result revealed the presence of heavy metals like As, Cr, Cd, and Pd. Lead was found at 160 mg/L in PCBs leachate, which exceeded the toxicity characteristics (TC) limit of 5 mg/L. Liquid sample analysis from TCLP also showed the presence of C-10-C-19 components, including benzene. This study's results contribute to the development of practical recycling alternative approaches that could help reduce health risks and environmental problems and recover materials from e-waste. These results will also help assess the hazard risks that workers are exposed to semi-formal recycling centers.
PDF http://manuscript.elsevier.com/S2213343720312926/pdf/S2213343720312926.pdf

Similar Articles

ID Score Article
15236 Hsu, E; Barmak, K; West, AC; Park, AHA Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies(2019)Green Chemistry, 21, 5
23715 Schulte, A; Lamb-Scheffler, M; Biessey, P; Rieger, T Prospective LCA of Waste Electrical and Electronic Equipment Thermo-Chemical Recycling by Pyrolysis(2023)Chemie Ingenieur Technik, 95, 8
24462 Dutta, D; Rautela, R; Gujjala, LKS; Kundu, D; Sharma, P; Tembhare, M; Kumar, S A review on recovery processes of metals from E-waste: A green perspective(2023)
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
26343 Davidson, MG; Furlong, RA; McManus, MC Developments in the life cycle assessment of chemical recycling of plastic waste e A review(2021)
27860 Urciuolo, M; Migliaccio, R; Chirone, R; Bareschino, P; Mancusi, E; Pepe, F; Ruoppolo, G Thermal and Catalytic Pyrolysis of Real Plastic Solid Waste as a Sustainable Strategy for Circular Economy(2023)Combustion Science And Technology, 195.0, 14
17052 Jeswani, H; Krüger, C; Russ, M; Horlacher, M; Antony, F; Hann, S; Azapagic, A Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery(2021)
26629 Jung, S; Lee, S; Song, H; Tsang, YF; Kwon, EE Sustainable Valorization of E-Waste Plastic through Catalytic Pyrolysis Using CO2(2022)
21898 Jagodzinska, K; Zaini, IN; Svanberg, R; Yang, WH; Jönsson, PG Pyrolysis of excavated waste from landfill mining: Characterisation of the process products(2021)
24647 Qureshi, MS; Oasmaa, A; Pihkola, H; Deviatkin, I; Tenhunen, A; Mannila, J; Minkkinen, H; Pohjakallio, M; Laine-Ylijoki, J Pyrolysis of plastic waste: Opportunities and challenges(2020)
Scroll