Knowledge Agora



Similar Articles

Title Life Cycle Assessment of repurposed electric vehicle batteries: an adapted method based on modelling energy flows
ID_Doc 15183
Authors Bobba, S; Mathieux, F; Ardente, F; Blengini, GA; Cusenza, MA; Podias, A; Pfrang, A
Title Life Cycle Assessment of repurposed electric vehicle batteries: an adapted method based on modelling energy flows
Year 2018
Published
Abstract After their first use in electric vehicles (EVs), the residual capacity of traction batteries can make them valuable in other applications. Although reusing EV batteries remains an undeveloped market, second-use applications of EV batteries are in line with circular economy principles and the waste management hierarchy. Although substantial environmental benefits are expected from reusing traction batteries, further efforts are needed in data collection, modelling the life-cycle stages and calculating impact indicators to propose a harmonized and adapted life-cycle assessment (LCA) method. To properly assess the environmental benefits and drawbacks of using repurposed EV batteries in second-use applications, in this article an adapted LCA is proposed based on the comparison of different scenarios from a life-cycle perspective. The key issues for the selected life-cycle stages and the aspects and parameters to be assessed in the analysis are identified and discussed for each stage, including manufacturing, repurposing, reusing and recycling. The proposed method is applied to a specific case study concerning the use of repurposed batteries to increase photovoltaic (PV) self-consumption in a given dwelling. Primary data on the dwelling's energy requirements and PV production were used to properly assess the energy flows in this specific repurposed scenario: both the literature search performed and the results obtained highlighted the relevance of modelling the system energy using real data, combining the characteristics of both the battery and its application. The LCA results confirmed that the environmental benefits of adopting repurposed batteries to increase PV self-consumption in a house occur under specific conditions and that the benefits are more or less considerable depending on the impact category assessed. Higher environmental benefits refer to impact categories dominated by the manufacturing and repurposing stages. Some of the most relevant parameters (e.g. residual capacity and allocation factor) were tested in a sensitivity analysis. The method can be used in other repurposing application cases if parameters for these cases can be determined by experimental tests, modelling or extracting data from the literature.
PDF https://doi.org/10.1016/j.est.2018.07.008

Similar Articles

ID Score Article
12756 Kotak, Y; Fernández, CM; Casals, LC; Kotak, BS; Koch, D; Geisbauer, C; Trilla, L; Gómez-Núñez, A; Schweiger, HG End of Electric Vehicle Batteries: Reuse vs. Recycle(2021)Energies, 14.0, 8
21474 Schulz-Mönninghoff, M; Bey, N; Norregaard, PU; Niero, M Integration of energy flow modelling in life cycle assessment of electric vehicle battery repurposing: Evaluation of multi-use cases and comparison of circular business models(2021)
22148 Picatoste, A; Justel, D; Mendoza, JMF Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines(2022)
17650 Kim, B; Azzaro-Pantel, C; Pietrzak-David, M; Maussion, P Life cycle assessment for a solar energy system based on reuse components for developing countries(2019)
25048 Wewer, A; Bilge, P; Dietrich, F Advances of 2nd Life Applications for Lithium Ion Batteries from Electric Vehicles Based on Energy Demand(2021)Sustainability, 13, 10
4873 Cusenza, MA; Guarino, F; Longo, S; Ferraro, M; Cellura, M Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles(2019)
26059 Casals, LC; Barbero, M; Corchero, C Reused second life batteries for aggregated demand response services(2019)
4192 Thakur, J; Baskar, AG; de Almeida, CML Electric vehicle batteries for a circular economy: Second life batteries as residential stationary storage(2022)
24417 Fallah, N; Fitzpatrick, C How will retired electric vehicle batteries perform in grid-based second-life applications? A comparative techno-economic evaluation of used batteries in different scenarios(2022)
26051 Frank, M; Holz, DS; Klohs, D; Offermanns, C; Heimes, HH; Kampker, A Identification and Mitigation of Predominant Challenges in the Utilization of Aged Traction Batteries within Stationary Second-Life Scenarios(2024)Energies, 17, 5
Scroll