Knowledge Agora



Similar Articles

Title Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management
ID_Doc 15190
Authors Cruz, H; Law, YY; Gues, JS; Rabaey, K; Batstone, D; Laycock, B; Verstraete, W; Pikaar, I
Title Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management
Year 2019
Published Environmental Science & Technology, 53, 19
Abstract Throughout the 20th century, the prevailing approach toward nitrogen management in municipal wastewater treatment was to remove ammonium by transforming it into dinitrogen (N-2) using biological processes such as conventional activated sludge. While this has been a very successful strategy for safeguarding human health and protecting aquatic ecosystems, the conversion of ammonium into its elemental form is incompatible with the developing circular economy of the 21st century. Equally important, the activated sludge process and other emerging ammonium removal pathways have several environmental and technological limitations. Here, we assess that the theoretical energy embedded in ammonium in domestic wastewater represents roughly 38-48% of the embedded chemical energy available in the whole of the discharged bodily waste. The current routes for ammonium removal not only neglect the energy embedded in ammonium, but they can also produce N2O, a very strong greenhouse gas, with such emissions comprising the equivalent of 14-26% of the overall carbon footprint of wastewater treatment plants. N2O emissions often exceed the carbon emissions related to the electricity consumption for the process requirements of WWTPs. Considering these limitations, there is a need to develop alternative ammonium management approaches that center around recovery of ammonium from domestic wastewater rather than deal with its "destruction" into elemental dinitrogen. Current ammonium recovery techniques are applicable only at orders of magnitude above domestic wastewater strength, and so new techniques based on physicochemical adsorption are of particular interest. A new pathway is proposed that allows for mainstream ammonium recovery from wastewater based on physicochemical adsorption through development of polymer-based adsorbents. Provided adequate adsorbents corresponding to characteristics outlined in this paper are designed and brought to industrial production, this adsorption-based approach opens perspectives for mainstream continuous adsorption coupled with side-stream recovery of ammonium with minimal chemical requirements. This proposed pathway can bring forward an effective resource-oriented approach to upgrade the fate of ammonium in urban water management without generating hidden externalized environmental costs.
PDF

Similar Articles

ID Score Article
3341 Zhang, XY; Liu, Y Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward(2021)
24699 Sheikh, M; Harami, HR; Rezakazemi, M; Cortina, JL; Aminabhavi, TM; Valderrama, C Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH3-N recovery technologies: A review(2023)
29889 Samarina, T; Guagneli, L; Takaluoma, E; Tuomikoski, S; Pesonen, J; Laatikainen, O Ammonium removal by metakaolin-based geopolymers from municipal and industrial wastewaters and its sequential recovery by stripping techniques(2022)
27671 Zhang, XY; Liu, Y Resource recovery from municipal wastewater: A critical paradigm shift in the post era of activated sludge(2022)
9994 Qin, YJ; Wang, KC; Zhou, Z; Yu, SQ; Wang, LH; Xia, Q; Zhao, XD; Zhou, CT; Ye, JF; Wu, ZC Nitrogen recovery from wastewater as nitrate by coupling mainstream ammonium separation with side stream cyclic up-concentration and targeted conversion(2023)
21292 Pinelli, D; Foglia, A; Fatone, F; Papa, E; Maggetti, C; Bovina, S; Frascari, D Ammonium recovery from municipal wastewater by ion exchange: Development and application of a procedure for sorbent selection(2022)Journal Of Environmental Chemical Engineering, 10.0, 6
29411 Xiang, SY; Liu, YH; Zhang, GM; Ruan, R; Wang, YP; Wu, XD; Zheng, HL; Zhang, Q; Cao, LP New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters(2020)World Journal Of Microbiology & Biotechnology, 36.0, 10
24970 Clark, B; Tarpeh, WA Selective Recovery of Ammonia Nitrogen from Wastewaters with Transition Metal-Loaded Polymeric Cation Exchange Adsorbents(2020)Chemistry-A European Journal, 26, 44
15265 He, MB; Ng, TCA; Huang, SJ; Xu, BY; Ng, HY Ammonium removal and recovery from effluent of AnMBR treating real domestic wastewater using polymeric hydrogel(2022)
9615 Gong, YX; Wang, XY; Bao, XA; Lam, KL Life cycle assessment of ammonium sulfate recovery from urban wastewater(2024)Blue-Green Systems, 6.0, 1
Scroll