Knowledge Agora



Similar Articles

Title Sugarcane Bagasse as a Co-Substrate with Oil-Refinery Biological Sludge for Biogas Production Using Batch Mesophilic Anaerobic Co-Digestion Technology: Effect of Carbon/Nitrogen Ratio
ID_Doc 15558
Authors Ghaleb, AAS; Kutty, SRM; Salih, GHA; Jagaba, AH; Noor, A; Kumar, V; Almahbashi, NMY; Saeed, AAH; Saleh, BNA
Title Sugarcane Bagasse as a Co-Substrate with Oil-Refinery Biological Sludge for Biogas Production Using Batch Mesophilic Anaerobic Co-Digestion Technology: Effect of Carbon/Nitrogen Ratio
Year 2021
Published Water, 13, 5
Abstract Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries' wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge's carbon/nitrogen (C/N) ratio is lower than the ideal 20-30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35-37 degrees C, pH (6-8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 degrees C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.
PDF https://www.mdpi.com/2073-4441/13/5/590/pdf?version=1615458926

Similar Articles

ID Score Article
8386 Mumtaz, S; Abbas, Y; Ahmad, I; Hassan, A; Saeed, MF; Yun, SN; Almarhoon, ZM; Shelkh, M; Hassan, AM; Rosaiah, P; Suneetha, M; Ahmad, A Sugarcane-bagasse-ash in enhanced mesophilic Co-digestion for biogas and nutrient recovery: A concept of developing rural circular bioeconomy(2023)
9411 de la Cruz-azuara, JE; Ruiz-Marin, A; Canedo-Lopez, Y; Aguilar-Ucan, CA; Ceron-Breton, RM; Ceron-Breton, JG; Anguebes-Franseschi, F Biomethane Production from the Two-Stage Anaerobic Co-Digestion of Cow Manure: Residual Edible Oil with Two Qualities of Waste-Activated Sludge(2024)Energies, 17.0, 12
15490 Azevedo, A; Lapa, N; Moldao, M; Duarte, E Opportunities and challenges in the anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: A review(2023)
9304 Dhull, P; Lohchab, RK; Kumar, S; Kumari, M; Shaloo; Bhankhar, AK Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy(2024)Bioenergy Research, 17.0, 2
9518 Hanif, MU; Zwawi, M; Algarni, M; Bahadar, A; Iqbal, H; Capareda, SC; Hanif, MA; Waqas, A; Hossain, N; Siddiqui, MTH; Nizamuddin, S; Jamil, A The Effects of Using Pretreated Cotton Gin Trash on the Production of Biogas from Anaerobic Co-Digestion with Cow Manure and Sludge(2022)Energies, 15.0, 2
12398 Archana, K; Visckram, AS; Kumar, PS; Manikandan, S; Saravanan, A; Natrayan, L A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals(2024)
14725 Shah, SV; Lamba, BY; Tiwari, AK; Chen, WH Sustainable biogas production via anaerobic digestion with focus on CSTR technology: A review(2024)
22249 Devi, MK; Manikandan, S; Kumar, PS; Yaashikaa, PR; Oviyapriya, M; Rangasamy, G A comprehensive review on current trends and development of biomethane production from food waste: Circular economy and techno economic analysis(2023)
12528 Aboudi, K; Gómez-Quiroga, X; Alvarez-Gallego, CJ; Romero-García, LI Insights into Anaerobic Co-Digestion of Lignocellulosic Biomass (Sugar Beet By-Products) and Animal Manure in Long-Term Semi-Continuous Assays(2020)Applied Sciences-Basel, 10.0, 15
10086 Bedoic, R; Spehar, A; Puljko, J; Cucek, L; Cosic, B; Puksec, T; Duic, N Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production(2020)
Scroll