Knowledge Agora



Similar Articles

Title WEEE polymers valorization, its use as fuel in the gasification process and revaluation of the inert by-products obtained: Sustainable mortars as a solution
ID_Doc 15725
Authors Díaz-Perete, D; Hermoso-Orzáez, MJ; Terrados-Cepeda, J; Silva-Romano, P; Martin-Doñate, C
Title WEEE polymers valorization, its use as fuel in the gasification process and revaluation of the inert by-products obtained: Sustainable mortars as a solution
Year 2023
Published Heliyon, 9, 9
Abstract The global production of polymer materials has exploded in the last few decades. Their mechanical properties, erosion and corrosion resistance, good performance as insulation materials, and their ease and flexibility of manufacturing have made polymers one of the most widely used materials in the industry and in daily life. Several institutions and governments are beginning to raise serious environmental and ecological concerns with international impact soon, due to the increasing level of polymer production, which does not seem to be slowing down. It is necessary for the scientific community to make efforts in the development and evaluation of new meth-odologies to enable the inclusion of these types of materials in the circular economy of various production sectors. This is important in order to reduce the ecological impact caused by the current global production level of polymers. One of the most used methods for the recovery of polymeric materials is energy valorization through thermochemical processes. An example of this is thermal gasification using fuels composed of biomass and a mixture of polymeric waste from electrical and electronic equipment (WEEE). Through this thermochemical process, high-energy value synthesis gas, with a high concentration of hydrogen, is obtained on one hand, while waste products in the form of chars, ashes and slag are generated on the other hand. This manuscript presents a detailed study methodology that begins with chemical analysis of the raw material and includes subsequent analysis of mechanical results for the revaluation of these re-sidual inert by-products, using them as partial substitutes in cement clinker to produce building mortars. This described methodology influences directly in the LCC (Life Cycle Costing) of final designed products in plastic and extend material life cycle Plastic materials are here to stay, so the study and optimization of polymer waste recovery processes are vital in achieving the Sustainable Development Goals (SDGs) set by the European Union in terms of efficiency and sustainability. It is also the only possible way to create an environmentally sustainable future world for future generations. After applying the described methodology, the mechanical test results show that the modified mortars exhibit established behaviour during the hardening time and similar strength growth compared to commercial mortars. The maximum mechanical strengths achieved, including compressive and flexural strength, make modified mortars a viable choice for several applications in the civil engineering sector.
PDF http://www.cell.com/article/S2405844023074029/pdf

Similar Articles

ID Score Article
13923 Taurino, R; Bondioli, F; Messori, M Use of different kinds of waste in the construction of new polymer composites: review(2023)
28375 La Scalia, G; Saeli, M; Adelfio, L; Micale, R From lab to industry: Scaling up green geopolymeric mortars manufacturing towards circular economy(2021)
22675 Sarcinella, A; de Aguiar, JLB; Frigione, M Physical Properties of Eco-Sustainable Form-Stable Phase Change Materials Included in Mortars Suitable for Buildings Located in Different Continental Regions(2022)Materials, 15.0, 7
22737 Frigione, M; Sarcinella, A; de Aguiar, JLB Development and Performance of Eco-Sustainable Form-Stable Phase Change Materials (PCMs) for Mortars to Be Applied in Buildings Located in Different Climatic Areas(2023)Coatings, 13.0, 2
10058 Payá, J; Soriano, L; Font, A; Rosado, MVB; Nande, JA; Balbuena, JMM Reuse of Industrial and Agricultural Waste in the Fabrication of Geopolymeric Binders: Mechanical and Microstructural Behavior(2021)Materials, 14.0, 9
5899 Ruffino, B; Panepinto, D; Zanetti, M A Circular Approach for Recovery and Recycling of Automobile Shredder Residues (ASRs): Material and Thermal Valorization(2021)Waste And Biomass Valorization, 12, 6
15501 Flizikowski, J; Kruszelnicka, W; Macko, M The Development of Efficient Contaminated Polymer Materials Shredding in Recycling Processes(2021)Polymers, 13, 5
20242 Kijenski, J Polymeric materials in sustainable development - from the need to use to the need for wear Part II. Return to monomers(2019)Polimery, 64, 11-12
15503 Antelava, A; Jablonska, N; Constantinou, A; Manos, G; Salaudeen, SA; Dutta, A; Al-Salem, SM Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification(2021)Energy & Fuels, 35, 5
13850 Volpintesta, F; Finocchiaro, C; Barone, G; Mazzoleni, P; Paris, E Compositional Differences in Construction and Demolition Wastes (CDWs) for Geopolymer Mortars: A Comparative Study Using Different Precursors and Alkaline Reagents(2024)Minerals, 14, 4
Scroll