Knowledge Agora



Similar Articles

Title Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation
ID_Doc 15746
Authors Vu, VNH; Kohari-Farkas, C; Filep, R; Laszlovszky, G; Ban, MT; Bujna, E; Gupta, VK; Nguyen, QD
Title Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation
Year 2023
Published Biofuel Research Journal-Brj, 10, 3
Abstract Cellulose-rich agricultural residues are promising renewable sources for producing various value-added products such as 2nd generation biofuels. However, the efficiency of the bioconversion process is not always satisfactory due to the slow and incomplete degradation of lignocellulosic biomass. An interesting approach would be using microbial communities with high lignocellulose-degrading ability for environmentally friendly pretreatment. This study focused on characterizing the degradation performance of bacteria, fungal, and yeast strains and designing and constructing different microbial consortia for solid-state treatment of wheat bran and wheat straw. The microbial consortia, namely BFY4 and BFY5, contained different bacteria, fungal, and yeast led to high ratios of sugar accumulation ranging from 3.21 to 3.5 with degradation rates over 33%, owing to more favorable hydrolytic enzyme activities and improved reducing sugar yield during the process. After 72 h, the highest FPase (0.213 IU/gds) and xylanase (7.588 IU/gds) activities were also detected in the wheat straw pretreated by BFY4 and BFY5, respectively, while CMCase activity peaked (0.928 IU/gds) when wheat bran was used as substrate. The amount of released glucose increased during the treatment process when the two substrates were used in the same ratio. Our results indicated that substrate composition also plays an important role in the degradation capacity of mixed cultures. These findings can be instrumental in advancing the primary knowledge required to apply such bioprocesses at the pilot scale. .& COPY; 2023 BRTeam. All rights reserved.
PDF https://www.biofueljournal.com/article_178346_0d491e87235744bb1f7aa5bf7c16d1ef.pdf

Similar Articles

ID Score Article
12802 Caroca, E; Elorrieta, M; Palma, C; Navia, D; Lebrero, R; Carvajal, A Lignocellulosic residue valorization in a sequential process of solid-state fermentation and solid substrate anaerobic digestion(2022)Journal Of Chemical Technology And Biotechnology, 97.0, 6
20081 Rodrigues, DM; da Silva, MF; de Mélo, AHF; Carvalho, PH; Baudel, HM; Goldbeck, R Sustainable synthesis pathways: Bacterial nanocellulose from lignocellulosic biomass for circular economy initiatives(2024)
13249 Rudnyckyj, S; Chaturvedi, T; Thomsen, MH Microbial biomass production from enzymatically saccharified organic municipal waste and present microbial inhibitors(2024)
15113 Carrillo-Nieves, D; Saldarriaga-Hernandez, S; Gutiérrez-Soto, G; Rostro-Alanis, M; Hernández-Luna, C; Alvarez, AJ; Iqbal, HMN; Parra-Saldívar, R Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste(2022)Biomass Conversion And Biorefinery, 12, 2
19860 Mittermeier, F; Fischer, F; Hauke, S; Hirschmann, P; Weuster-Botz, D Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed(2024)Biotech, 13.0, 2
24842 Singh, G; Samuchiwal, S; Hariprasad, P; Sharma, S Melioration of Paddy Straw to produce cellulase-free xylanase and bioactives under Solid State Fermentation and deciphering its impact by Life Cycle Assessment(2022)
23842 Bhatia, T; Bose, D; Sharma, D; Patel, D A Review on Cellulose Degrading Microbes and its Applications(2024)Industrial Biotechnology, 20, 1
13807 Teigiserova, DA; Bourgine, J; Thomsen, M Closing the loop of cereal waste and residues with sustainable technologies: An overview of enzyme production via fungal solid-state fermentation(2021)
27397 Narisetty, V; Nagarajan, S; Gadkari, S; Ranade, V; Zhang, JX; Patchigolla, K; Bhatnagar, A; Awasthi, MK; Pandey, A; Kumar, V Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach(2022)
7545 Yang, WQ; Su, YW; Wang, RB; Zhang, HY; Jing, HY; Meng, J; Zhang, GQ; Huang, LQ; Guo, LP; Wang, J; Gao, WY Microbial production and applications of β-glucosidase-A review(2024)
Scroll