Knowledge Agora



Similar Articles

Title Influence of cultivation conditions on the bioenergy potential and bio-compounds of Chlorella vulgaris
ID_Doc 16013
Authors Caetano, N; Melo, AR; Gorgich, M; Branco-Vieira, M; Martins, AA; Mata, TM
Title Influence of cultivation conditions on the bioenergy potential and bio-compounds of Chlorella vulgaris
Year 2020
Published
Abstract This study aims to evaluate the influence of cultivation conditions on the bioenergy and high value biocompounds contents of Chlorella vulgaris. Results show that the use of nitrate rich media, from 170.7 mg/L, favors a faster biomass growth, reaching values above 800 mg/L biomass. In addition, it favors higher pigments concentrations with more emphasis for the cultures with a nitrate concentration of 569 mg/L, where chlorophyll-a and carotenoids reached maximum concentrations of 6 and 2 mg/L, respectively. As regards the lipid content, nitrate deprivation (<28.4 mg/L) favors the accumulation of lipid content by microalgae (around 42%). The use of media with lower iron concentrations (0.5 mg/L) was favorable for obtaining biomass with higher concentrations of chlorophyll-a, at an initial stage, with values varying from 0.2 to 0.6 mg/L. In the tests carried out under mixotrophic conditions (addition of glucose), it was observed that contamination occurred in all the cultures, possibly due to the high concentration of carbon source that had values between 0.5 and 1.5 g/L of glucose, and consequently, growth decreased. (C) 2019 Published by Elsevier Ltd.
PDF https://doi.org/10.1016/j.egyr.2019.08.076

Similar Articles

ID Score Article
7686 Chambonniere, P; Ramírez-Romero, A; Dimitriades-Lemaire, A; Sassi, JF; Delrue, F Photosynthetic Carbon Uptake Correlates with Cell Protein Content during Lipid Accumulation in the Microalga Chlorella vulgaris NIES 227(2022)Fermentation-Basel, 8, 11
14489 Verma, R; Suthar, S; Chand, N; Mutiyar, PK Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system(2022)
12884 Arrojo, MA; Regaldo, L; Orquín, JC; Figueroa, FL; Díaz, RTA Potential of the microalgae Chlorella fusca (Trebouxiophyceae, Chlorophyta) for biomass production and urban wastewater phycoremediation(2022)Amb Express, 12.0, 1
16536 Condori, MAM; Gutierrez, MEV; Oviedo, RDN; Choix, FJ Valorization of nutrients from fruit residues for the growth and lipid production of Chlorella sp.: A vision of the circular economy in Peru(2024)Journal Of Applied Phycology, 36, 1
15119 Plöhn, M; Scherer, K; Stagge, S; Jönsson, LJ; Funk, C Utilization of Different Carbon Sources by Nordic Microalgae Grown Under Mixotrophic Conditions(2022)
20109 Wang, X; Qin, ZH; Hao, TB; Ye, GB; Mou, JH; Balamurugan, S; Bin, XY; Buhagiar, J; Wang, HM; Lin, CSK; Yang, WD; Li, HY A combined light regime and carbon supply regulation strategy for microalgae-based sugar industry wastewater treatment and low-carbon biofuel production to realise a circular economy(2022)
10591 Vadiveloo, A; Matos, AP; Chaudry, S; Bahri, PA; Moheimani, NR Effect of CO2 addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp. (Trebouxiophyceae)(2020)
10133 Yin, YX; Miao, XL Sustainable Lutein Production from Chlorella sorokiniana NIES-2168 by Using Aquaculture Wastewater with Two-Stage Cultivation Strategies(2024)Water, 16.0, 1
14726 Ljumovic, K; Betterle, N; Baietta, A; Ballottari, M Valorization of wastewater from industrial hydroponic cultivations using the microalgal species Chlorella vulgaris(2024)
13991 Gogonin, AV; Shchemelinina, TN; Anchugova, EM Utilization of wastewaters as a nutrient medium for the accumulation of microalgal biomass(2022)
Scroll