Knowledge Agora



Similar Articles

Title Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts
ID_Doc 16049
Authors Azócar, BS; Vargas, PO; Campos, C; Medina, F; Arteaga-Pérez, LE
Title Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts
Year 2022
Published
Abstract About 25.7 million tons of waste tires (WT) are discarded each year worldwide causing important environmental, and health problems. This waste is difficult to manage and dispose due to its huge rate of generation and its extremely slow biodegradation. Therefore, many efforts are being made to valorise WTs into a series of marketable products under a circular economy framework. In the attempt to convert WT into higher-value products, thermochemical decomposition by pyrolysis has emerged as a promising process [1]. The pyrolysis is a thermochemical transformation (under an oxygen-depleted atmosphere) of the tires polymeric constituents: natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR) into three major fractions. These fractions are a gas (10-35%, TPG) which is usually used as a heat source (50 MJ kg(-1)), a solid consisting mainly of recovered carbon black (12-45%, rCB), and a liquid fraction (35-65%, TPO) containing a complex mixture of organic compounds. Among the high-value compounds that can be found in the TPO are D,L-limonene, isoprene, benzene, toluene, mixed-xylene, ethylbenzene, styrene, p-cymene, and some polycyclic aromatic hydrocarbons. This mixture is commonly used as a diesel substitute and owing to its complex composition it rarely is seen as a source for more valuable products. To overcome such a complexity, and selectively produce specific chemical identities, different types of catalysts have been used [2,3]. Herein, we provide a dataset from a systematic study about catalytic pyrolysis of WT for selectively producing benzene, toluene, and xylenes (BTX) and p-cymene on noble metals (Pd, Pt, Au) supported on titanate nanotubes (NT-Ti). The comprehensive analysis of this data was recently published, thus, the analytical techniques, experimental conditions and dataset are given in the present paper as a complement to that publication [1]. The reaction was evaluated in an analytical pyrolysis unit consisting in a micropyrolizer coupled to a mass spectrometer (Py-GC/MS) operating at temperatures between 400 and 450 degrees C in a fast pyrolysis regime (12 s). The effectivity of catalysts was measured in terms of selectivity to monoaromatics as BTX and p-cymene, under noncatalytic and for catalytic pyrolysis conditions. Moreover, the reaction was conducted on individual rubbers (Polyisoprene, Polybutadiene, and Styrene-Butadiene) and DL-limonene, to get deep insights into the transformation behaviour and reaction pathways. Therefore, the reader will find a data-in-brief paper containing some characterizations of the WTs used for the investigation, along with a complete dataset of Py-GC/MS results. Finally, the original files for the interpretation of the MS results are also provided, so that the reader can easily use this information to further expand the study to their own interest (industrial or scientific). (C) 2021 The Author(s). Published by Elsevier Inc.
PDF https://doi.org/10.1016/j.dib.2021.107745

Similar Articles

ID Score Article
14817 González-Pernas, FM; Moreno, I; Serrano, DP; Pizarro, P Enhanced monoaromatic hydrocarbons production via pressurized catalytic pyrolysis of end-of-life tires(2024)
13534 Rijo, B; Dias, APS; Wojnicki, L Catalyzed pyrolysis of scrap tires rubber(2022)Journal Of Environmental Chemical Engineering, 10, 1
9899 Zhang, MH; Qi, YF; Zhang, W; Wang, MT; Li, JY; Lu, Y; Zhang, S; He, JZ; Cao, H; Tao, X; Xu, HL; Zhang, S A review on waste tires pyrolysis for energy and material recovery from the optimization perspective(2024)
26044 Martínez, JD; Campuzano, F; Cardona-Uribe, N; Arenas, CN; Muñoz-Lopera, D Waste tire valorization by intermediate pyrolysis using a continuous twin-auger reactor: Operational features(2020)
6299 Campuzano, F; Martínez, JD; Santamaría, AFA; Sarathy, SM; Roberts, WL Pursuing the End-of-Life Tire Circularity: An Outlook toward the Production of Secondary Raw Materials from Tire Pyrolysis Oil(2023)Energy & Fuels, 37, 13
26441 Martínez, JD; Campuzano, F; Agudelo, AF; Cardona-Uribe, N; Arenas, CN Chemical recycling of end-of-life tires by intermediate pyrolysis using a twin-auger reactor: Validation in a laboratory environment(2021)
13011 Costa, SMR; Fowler, D; Carreira, GA; Portugal, I; Silva, CM Production and Upgrading of Recovered Carbon Black from the Pyrolysis of End-of-Life Tires(2022)Materials, 15.0, 6
12454 Peng, YJ; Wang, YP; Ke, LY; Dai, LL; Wu, QH; Cobb, K; Zeng, Y; Zou, RG; Liu, YH; Ruan, RG A review on catalytic pyrolysis of plastic wastes to high-value products(2022)
24564 Tang, XJ; Chen, X; He, Y; Evrendilek, F; Chen, ZY; Liu, JY Co-pyrolytic performances, mechanisms, gases, oils, and chars of textile dyeing sludge and waste shared bike tires under varying conditions(2022)
22771 Wu, QJ; Zhang, QQ; Chen, XY; Song, GH; Xiao, J Life cycle assessment of waste tire recycling: Upgraded pyrolytic products for new tire production(2024)
Scroll