Knowledge Agora



Similar Articles

Title The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex
ID_Doc 16071
Authors Arcentales-Bastidas, D; Silva, C; Ramirez, AD
Title The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex
Year 2022
Published Energies, 15, 15
Abstract The present study compiles a life cycle inventory for Ecuadorian sugarcane-derived ethanol production to quantify its environmental performance and identify the life cycle stages that cause major impacts. The scope of this study encompasses a cradle-to-gate analysis that includes the agriculture, the milling, the distillation, and the co-generation of electricity. This assessment is modeled using the OpenLCA v1.10.3 software. Two functional units (FU) were established in this study: "1 ton of sugarcane at-the-farm-gate" for the agricultural stage and "1 L of ethanol at-the-plant-gate". A hybrid attributional and consequential life cycle analysis (LCA) approach has been followed. Economic allocation (EA) and system expansion (SE) were used to take co-products into account in the milling and co-generation of electricity stages, respectively. The co-generation stage is analyzed in three different scenarios: (i) average mix displacement scenario where the surplus electricity produced in the co-generation stage is displaced; (ii) marginal technology displacement scenario where the marginal surplus electricity is displaced from the mix and (iii) no displacement scenario. The global warming potential (GWP) impact at the farm gate level was reported as 53.6 kg of carbon dioxide equivalent (kg CO2eq.) per ton of sugarcane produced. The two main contributors of the agricultural stage correspond to N2O lixiviation and volatilization with 34% followed by the diesel used in agricultural machinery with 24%. The GWP for 1 L of ethanol produced was reported as 0.60 kg CO 2eq. based on the average mix displacement scenario. No displacement scenario has a GWP impact of 0.84 kg CO 2 /liter of ethanol The distillation stage has the highest contribution to GWP impact with approximately 61% followed by the agricultural stage with 47%. The co-generation stage reports a contribution of -8.4% due to the surplus electricity displacement. The scenarios where the system expansion method is applied have a lower GWP impact compared to the scenario where no surplus electricity is displaced. Regarding terrestrial acidification potential impact, 0.01528 kg of SO2eq. was reported at the ethanol production level especially due to the nitrogen and phosphorous content in the vinasse produced from the distillation process. The marine eutrophication impact for 1 L of ethanol produced was 0.00381 kg of N-eq. due to the content of nitrogen contained in the vinasse and the use of nitrogenous fertilizers in the agricultural stage. Finally, to create more eco-friendly Ecuadorian sugarcane and ethanol industries, sustainable and less polluting processes should be sought to reduce the environmental burdens. Companies should apply industrial symbiosis and circular economy strategies to produce lesser environmental loads within the ethanol production chain. The sugarcane industrial sector should also promote the surplus electricity production in order to gain credits.
PDF

Similar Articles

ID Score Article
27705 Nadaleti, WC; Lourenço, VA A mathematical, economic and energetic appraisal of biomethane and biohydrogen production from Brazilian ethanol plants' waste: Towards a circular and renewable energy development(2021)International Journal Of Hydrogen Energy, 46.0, 54
68172 Rodriguez, RP; Manochio, C; Moraes, BD Energy Integration of Biogas Production in an Integrated 1G2G Sugarcane Biorefinery: Modeling and Simulation(2019)Bioenergy Research, 12, 1
69431 Freitas, JV; Bilatto, S; Squinca, P; Pinto, ASS; Brondi, MG; Bondancia, TJ; Batista, G; Klaic, R; Farinas, CS Sugarcane biorefineries: potential opportunities towards shifting from wastes to products(2021)
15392 Rossetto, R; Ramos, NP; Pires, RCD; Xavier, MA; Cantarella, H; Landell, MGD Sustainability in Sugarcane Supply Chain in Brazil: Issues and Way Forward(2022)Sugar Tech, 24, 3
20200 de Carvalho, JC; Vandenberghe, LPS; Sydney, EB; Karp, SG; Magalhaes, AI; Martinez-Burgos, WJ; Medeiros, ABP; Thomaz-Soccol, V; Vieira, S; Letti, LAJ; Rodrigues, C; Woiciechowski, AL; Soccol, CR Biomethane Production from Sugarcane Vinasse in a Circular Economy: Developments and Innovations(2023)Fermentation-Basel, 9, 4
13384 Tena, M; Buller, LS; Sganzerla, WG; Berni, M; Forster-Carneiro, T; Solera, R; Pérez, M Techno-economic evaluation of bioenergy production from anaerobic digestion of by-products from ethanol flex plants(2022)
22859 Silalertruksa, T; Wirodcharuskul, C; Gheewala, SH Environmental Sustainability of Waste Circulation Models for Sugarcane Biorefinery System in Thailand(2022)Energies, 15.0, 24
68473 Chandel, AK; Albarelli, JQ; Santos, DT; Chundawat, SPS; Puri, M; Meireles, MAA Comparative analysis of key technologies for cellulosic ethanol production from Brazilian sugarcane bagasse at a commercial scale(2019)Biofuels Bioproducts & Biorefining-Biofpr, 13, 4
26994 Gerrior, D; Bahri, KD; Kermanshahi-pour, A; Eckelman, MJ; Brar, SK Life cycle assessment and techno-economic analysis of a novel closed loop corn ethanol biorefinery(2022)
26125 Nunes, LJR; Loureiro, LMEF; Sa, LCR; Silva, HFC Sugarcane Industry Waste Recovery: A Case Study Using Thermochemical Conversion Technologies to Increase Sustainability(2020)Applied Sciences-Basel, 10, 18
Scroll