Knowledge Agora



Similar Articles

Title Circular economy approaches for the production of high-value polysaccharides from microalgal biomass grown on industrial fish processing wastewater: A review
ID_Doc 16285
Authors Rifna, EJ; Rajauria, G; Dwivedi, M; Tiwari, BK
Title Circular economy approaches for the production of high-value polysaccharides from microalgal biomass grown on industrial fish processing wastewater: A review
Year 2024
Published
Abstract The discharge of high-strength wastewater from the fish-processing industries, comprising undefined blends of toxic and organic compounds, has always been a subject of great disquiet worldwide. Despite a large number of effluent treatment methodologies known to date, biosorption with the aid of naturally grown microalgae has been recognized recently to possess promising outcomes in eradicating pollutants comprising organic compounds from liquid effluents. Interestingly, the microalgal biomass harvested from phytoremediation of fish effluent was identified to be abundant in bio compounds that exhibited potential application in pharmaceutical, nutraceutical, and, aquaculture feed, generating a circular economy. In this context, the focus of the review is to emphasize the applications of microalgal species as naturally occurring and zero-cost adsorbents for the elimination of organic contaminants from fish liquid effluents. The summary of the literature encompassed in this work is supposed to benefit the readers to comprehend the primary mechanisms by which microalgae uptakes the organic matter from fish processing effluents and converts them into various biological molecules. From the scientific works assessed through this review, the most promising microalgae species regards to nutrient uptake and removal efficiency from fish effluent, were identified as Chlorella sp. > Spirulina sp. > Scenedesmus sp. The review further revealed supercritical fluid extraction as the robust extraction tool for the extraction of targeted bioproducts from microalgal biomass grown within fish effluents. Eventually, the information presented through this review establishes phytoremediation using microalgal biomass to be a natural cost-effective, sustainable circular bio-economy approach that could be robustly applied for the efficient treatment of wastewater discharged from food processing industries.
PDF

Similar Articles

ID Score Article
23521 Esteves, AF; Soares, SM; Salgado, EM; Boaventura, RAR; Pires, JCM Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal(2022)Applied Sciences-Basel, 12, 24
10416 Kurniawan, SB; Ahmad, A; Imron, MF; Abdullah, SRS; Othman, AR; Abu Hasan, H Potential of microalgae cultivation using nutrient-rich wastewater and harvesting performance by biocoagulants/bioflocculants: Mechanism, multi-conversion of biomass into valuable products, and future challenges(2022)
25272 Nishshanka, GKSH; Thevarajah, B; Nimarshana, PHV; Prajapati, SK; Ariyadasa, TU Real-time integration of microalgae-based bioremediation in conventional wastewater treatment plants: Current status and prospects(2023)
27873 Ahmad, A; Hassan, SW; Banat, F An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy(2022)Bioengineered, 13.0, 4
12761 Catone, CM; Ripa, M; Geremia, E; Ulgiati, S Bio-products from algae-based biorefinery on wastewater: A review(2021)
8031 Umetani, I; Sposób, M; Tiron, O Indigenous Green Microalgae for Wastewater Treatment: Nutrient Removal and Resource Recovery for Biofuels and Bioproducts(2023)Bioenergy Research, 16, 4
23544 Arias, A; Feijoo, G; Moreira, MT Macroalgae biorefineries as a sustainable resource in the extraction of value-added compounds(2023)
24451 Filote, C; Santos, SCR; Popa, VI; Botelho, CMS; Volf, I Biorefinery of marine macroalgae into high-tech bioproducts: a review(2021)Environmental Chemistry Letters, 19, 2
28340 Díaz, V; Leyva-Díaz, JC; Almécija, MC; Poyatos, JM; Muñío, MD; Martín-Pascual, J Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy(2022)
2956 Chhandama, M; Rai, PK; Lalawmpuii Coupling bioremediation and biorefinery prospects of microalgae for circular economy(2023)
Scroll