Knowledge Agora



Similar Articles

Title Circularity potential of rare earths for sustainable mobility: Recent developments, challenges and future prospects
ID_Doc 16353
Authors Silvestri, L; Forcina, A; Silvestri, C; Traverso, M
Title Circularity potential of rare earths for sustainable mobility: Recent developments, challenges and future prospects
Year 2021
Published
Abstract The growing popularity of electric and hybrid vehicles has led to a sudden increase in demand for batteries needed for their construction. The increasing quantity of batteries produced and placed on the market involves important criticalities related to the consumption of some critical raw materials, such as rare earths (REEs), and the end-of-life disposal. In this scenario, the possibility of recycling and the development of a circular economy model can play a fundamental role, reducing critical issues related to the depletion of REEs. This study aims to assess the circularity potential of REEs in the vehicle batteries industry, investigating the potential of a closed-loop recycling system in the European context. In this analysis, the study was conducted in two different phases: 1) A literature review, for establishing the knowledge required for modeling a proper circular economy system, including commercial recycling processes, industrial applications, market trends, European policies and recycling targets; and 2) Basing on the state-of-art framework derived from the literature review, the final assessment of the circularity potential of REEs over a time horizon of thirty years and the discussion of possible benefits related to the considered circular economy system. As a result, a closed-loop recycling system is modeled and the final assessment of the circularity potential shows how: 1) The current recovery technology, along with appropriate recycling policies, is able to reduce the future demand of REEs as early as from 2025; 2) High collection and recovery rates allow to contrast uncertainties in REEs supply chain; and 3) The recovery of REEs is a key process to ensure the economic sustainability of the entire recycling process. These results provide the evidence that an appropriate circular economy system for vehicle battery industry can lead to benefits not only in terms of supply risk reduction but also in relation to the preservation of natural resources, implying one step further towards a sustainable mobility. (C) 2021 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
611 Ahuja, J; Dawson, L; Lee, RB A circular economy for electric vehicle batteries: driving the change(2020)Journal Of Property Planning And Environmental Law, 12, 3
2969 Alamerew, YA; Brissaud, D Modelling reverse supply chain through system dynamics for realizing the transition towards the circular economy: A case study on electric vehicle batteries(2020)
4369 Feng, JH; Guo, P; Xu, GY Barriers to electric vehicle battery recycling in a circular economy: An interpretive structural modeling(2024)
4958 Islam, MT; Iyer-Raniga, U Lithium-Ion Battery Recycling in the Circular Economy: A Review(2022)Recycling, 7, 3
26882 Martins, LS; Guimaraes, LF; Botelho, AB; Tenorio, JAS; Espinosa, DCR Electric car battery: An overview on global demand, recycling and future approaches towards sustainability(2021)
6695 Ginster, R; Blömeke, S; Popien, JL; Scheller, C; Cerdas, F; Herrmann, C; Spengler, TS Circular battery production in the EU: Insights from integrating life cycle assessment into system dynamics modeling on recycled content and environmental impacts(2024)
22148 Picatoste, A; Justel, D; Mendoza, JMF Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines(2022)
4873 Cusenza, MA; Guarino, F; Longo, S; Ferraro, M; Cellura, M Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles(2019)
28821 Ferrara, C; Ruffo, R; Quartarone, E; Mustarelli, P Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling(2021)Advanced Energy And Sustainability Research, 2.0, 10
4350 Richa, K; Babbitt, CW; Gaustad, G Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy(2017)Journal Of Industrial Ecology, 21, 3
Scroll