Knowledge Agora



Similar Articles

Title The Chemical Recycling of PLA: A Review
ID_Doc 16449
Authors McKeown, P; Jones, MD
Title The Chemical Recycling of PLA: A Review
Year 2020
Published Sustainable Chemistry, 1, 1
Abstract Plastics are an indispensable material with numerous benefits and advantages compared to traditional materials, such as glass and paper. However, their widespread use has caused significant environmental pollution and most plastics are currently nonrenewable. Biobased polymers represent an important step for tackling these issues, however, the end-of-life disposal of such materials needs to be critically considered to allow for a transition to a circular economy for plastics. Poly(lactic acid) (PLA) is an important example of a biobased polymer, which is also biodegradable. However, industrial composting of PLA affords water and carbon dioxide only and in the natural environment, PLA has a slow biodegradation rate. Therefore, recycling processes are important for PLA, particularly chemical recycling, which affords monomers and useful platform chemicals, maintaining the usefulness and value of the material. This review covers the different methods of PLA chemical recycling, highlighting recent trends and advances in the area.
PDF https://www.mdpi.com/2673-4079/1/1/1/pdf

Similar Articles

ID Score Article
3547 Payne, J; McKeown, P; Jones, MD A circular economy approach to plastic waste(2019)
6147 Schwarz, A; Ferjana, S; Kunst, J Life cycle assessment of advanced grade PLA product with novel end-of-life treatment through depolymerization(2023)
6499 Yang, RL; Xu, GQ; Dong, BZ; Hou, HB; Wang, QG A "Polymer to Polymer" Chemical Recycling of PLA Plastics by the "DE-RE Polymerization" Strategy(2022)Macromolecules, 55, 5
23177 Fonseca, A; Ramalho, E; Gouveia, A; Figueiredo, F; Nunes, J Life Cycle Assessment of PLA Products: A Systematic Literature Review(2023)Sustainability, 15, 16
20710 Bartolucci, L; Cordiner, S; De Maina, E; Kumar, G; Mele, P; Mulone, V; Iglinski, B; Piechota, G Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers(2023)International Journal Of Molecular Sciences, 24, 9
7797 Zhang, Q; Hu, CY; Duan, RL; Huang, YZ; Li, X; Sun, ZQ; Pang, X; Chen, XS A recyclable process between a monomer and polyester with a natural catalyst(2022)Green Chemistry, 24, 23
4918 Spierling, S; Venkatachalam, V; Mudersbach, M; Becker, N; Herrmann, C; Endres, HJ End-of-Life Options for Bio-Based Plastics in a Circular Economy-Status Quo and Potential from a Life Cycle Assessment Perspective(2020)Resources-Basel, 9, 7
16243 Alaerts, L; Augustinus, M; Van Acker, K Impact of Bio-Based Plastics on Current Recycling of Plastics(2018)Sustainability, 10, 5
23588 Payne, J; Jones, MD The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities(2021)Chemsuschem, 14, 19
13746 Paiva, R; Pereira, ER; Wrona, M; Cruz, SA Optimization of Washing Parameters to Minimize the Degradation of Poly(lactic acid) Using Design of Experiments: A Contribution to the Recycling Chain(2024)Journal Of Polymers And The Environment, 32, 4
Scroll