Knowledge Agora



Similar Articles

Title Prospective analysis of the optimal capacity, economics and carbon footprint of energy recovery from municipal solid waste incineration
ID_Doc 16872
Authors Istrate, IR; Galvez-Martos, JL; Vázquez, D; Guillén-Gosálbez, G; Dufour, J
Title Prospective analysis of the optimal capacity, economics and carbon footprint of energy recovery from municipal solid waste incineration
Year 2023
Published
Abstract A more circular economy can have broad implications on energy recovery from municipal solid waste (MSW) incineration. Here we present an optimization framework to assess the optimal capacity, economics, and carbon footprint of MSW incineration over time. Using Madrid (Spain) as a case study, we find that ambitious recycling targets do not entail a risk of shortage in feedstock availability for incineration. An intensive use of incineration is imperative to reach the 10% landfill goal by 2035; between 23% and 54% of MSW over 2020-2040, depending on the scenario. Furthermore, the net cost of incineration could decrease by up to 67% driven by a shift in feedstock composition -characterized by a higher share of plastics- and the implementation of new, more efficient facilities. However, future changes in waste composition and the decarbonization of electricity mixes would increase the carbon footprint of incineration by 19-100%, thereby reducing the potential climate benefits.
PDF

Similar Articles

ID Score Article
74457 Khan, MS; Mubeen, I; Yu, CM; Zhu, GJ; Khalid, A; Yan, M Waste to energy incineration technology: Recent development under climate change scenarios(2022)Waste Management & Research, 40, 12
8053 Chin, MY; Lee, CT; Woon, KS Developing Circular Waste Management Strategies Based on a Waste Eco-Park Concept: A Multiobjective Optimization with Environmental, Economic, and Social Trade-offs(2023)Industrial & Engineering Chemistry Research, 62, 41
4319 Hoang, AT; Varbanov, PS; Nizetic, S; Sirohi, R; Pandey, A; Luque, R; Ng, KH; Pham, V Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy(2022)
971 Van Caneghem, J; Van Acker, K; De Greef, J; Wauters, G; Vandecasteele, C Waste-to-energy is compatible and complementary with recycling in the circular economy(2019)Clean Technologies And Environmental Policy, 21, 5
25568 Bellini, A; Bonoli, A Energy Balance of Waste Management Systems: A Case Study(2017)
12215 Kwon, Y; Lee, S; Bae, J; Park, S; Moon, H; Lee, T; Kim, K; Kang, J; Jeon, T Evaluation of Incinerator Performance and Policy Framework for Effective Waste Management and Energy Recovery: A Case Study of South Korea(2024)Sustainability, 16.0, 1
28681 Malinauskaite, J; Jouhara, H; Czajczynska, D; Stanchev, P; Katsou, E; Rostkowski, P; Thorne, RJ; Colón, J; Ponsá, S; Al-Mansour, F; Anguilano, L; Krzyzynska, R; López, IC; Vlasopoulos, A; Spencer, N Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe(2017)
5755 Shah, HH; Amin, M; Pepe, F Maximizing resource efficiency: opportunities for energy recovery from municipal solid waste in Europe(2023)Journal Of Material Cycles And Waste Management, 25, 5
26700 Liu, LLY; Barlaz, MA; Johnson, JX Economic and environmental comparison of emerging plastic waste management technologies(2024)
10631 Galván, SL; Bielsa, RO Use of life cycle assessment for estimating impacts of waste-to-energy technologies in solid waste management systems: the case of Buenos Aires, Argentina(2024)Environmental Science And Pollution Research, 31, 7
Scroll