Knowledge Agora



Similar Articles

Title Conceptualizing a new circular economy feature - storing renewable electricity in batteries beyond EV end-of-life: the case of Slovenia
ID_Doc 16982
Authors Obrecht, M; Singh, R; Zorman, T
Title Conceptualizing a new circular economy feature - storing renewable electricity in batteries beyond EV end-of-life: the case of Slovenia
Year 2022
Published International Journal Of Productivity And Performance Management, 71, 3
Abstract Purpose This paper aims to forecast the availability of used but operational electric vehicle (EV) batteries to integrate them into a circular economy concept of EVs' end-of-life (EOL) phase. Since EVs currently on the roads will become obsolete after 2030, this study focuses on the 2030-2040 period and links future renewable electricity production with the potential for storing it into used EVs' batteries. Even though battery capacity decreases by 80% or less, these batteries will remain operational and can still be seen as a valuable solution for storing peaks of renewable energy production beyond EV EOL. Design/methodology/approach Storing renewable electricity is gaining as much attention as increasing its production and share. However, storing it in new batteries can be expensive as well as material and energy-intensive; therefore, existing capacities should be considered. The use of battery electric vehicles (BEVs) is among the most exciting concepts on how to achieve it. Since reduced battery capacity decreases car manufacturers' interest in battery reuse and recycling is environmentally hazardous, these batteries should be integrated into the future electricity storage system. Extending the life cycle of batteries from EVs beyond the EV's life cycle is identified as a potential solution for both BEVEOL and electricity storage. Findings Results revealed a rise of photovoltaic (PV) solar power plants and an increasing number of EVs EOL that will have to be considered. It was forecasted that 6.27-7.22% of electricity from PV systems in scenario A (if EV lifetime is predicted to be 20 years) and 18.82-21.68% of electricity from PV systems in scenario B (if EV lifetime is predicted to be 20 years) could be stored in batteries. Storing electricity in EV batteries beyond EV EOL would significantly decrease the need for raw materials, increase energy system and EV sustainability performance simultaneously and enable leaner and more efficient electricity production and distribution network. Practical implications Storing electricity in used batteries would significantly decrease the need for primary materials as well as optimizing lean and efficient electricity production network. Originality/value Energy storage is one of the priorities of energy companies but can be expensive as well as material and energy-intensive. The use of BEV is among the most interesting concepts on how to achieve it, but they are considered only when in the use phase as vehicle to grid (V2G) concept. Because reduced battery capacity decreases the interest of car manufacturers to reuse batteries and recycling is environmentally risky, these batteries should be used for storing, especially renewable electricity peaks. Extending the life cycle of batteries beyond the EV's life cycle is identified as a potential solution for both BEV EOL and energy system sustainability, enabling more efficient energy management performance. The idea itself along with forecasting its potential is the main novelty of this paper.
PDF

Similar Articles

ID Score Article
68987 Li, JW; He, SC; Yang, QQ; Wei, ZB; Li, Y; He, HW A Comprehensive Review of Second Life Batteries Toward Sustainable Mechanisms: Potential, Challenges, and Future Prospects(2023)Ieee Transactions On Transportation Electrification, 9, 4
27419 Etxandi-Santolaya, M; Casals, LC; Garcia, BA; Corchero, C Circular Economy-Based Alternatives beyond Second-Life Applications: Maximizing the Electric Vehicle Battery First Life(2023)World Electric Vehicle Journal, 14.0, 3
4390 Silvestri, L; Forcina, A; Silvestri, C; Arcese, G; Falcone, D Exploring the Environmental Benefits of an Open-Loop Circular Economy Strategy for Automotive Batteries in Industrial Applications(2024)Energies, 17, 7
22681 Rajaeifar, MA; Ghadimi, P; Raugei, M; Wu, YF; Heidrich, O Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective(2022)
75059 Rufino, CA; Sanseverino, ER; Gallo, P; Koch, D; Kotak, Y; Schweiger, HG; Zanin, H Towards a business model for second-life batteries-barriers, opportunities, uncertainties, and technologies(2023)
8811 McCrossan, C; Shankaravelu, K A Review of the Second Life Electric Vehicle Battery Landscape from a Business and Technology Perspective(2021)
8918 Casals, LC; Etxandi-Santolaya, M; Bibiloni-Mulet, PA; Corchero, C; Trilla, L Electric Vehicle Battery Health Expected at End of Life in the Upcoming Years Based on UK Data(2022)Batteries-Basel, 8.0, 10
23033 Silvestri, L; De Santis, M; Bella, G A Preliminary Techno-Economic and Environmental Performance Analysis of Using Second-Life EV Batteries in an Industrial Application(2022)
8132 Campoverde-Pillco, J; Ochoa-Correa, D; Villa-avila, E; Astudillo-Salinas, P Reuse Of Electrical Vehicle Batteries For Second Life Applications In Power Systems With A High Penetration Of Renewable Energy: A Systematic Literature Review(2024)
67206 Faessler, B Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review(2021)Energies, 14, 8
Scroll