Knowledge Agora



Similar Articles

Title 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation
ID_Doc 17041
Authors Gugel, I; Marchetti, F; Costa, S; Gugel, I; Baldini, E; Vertuani, S; Manfredini, S
Title 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation
Year 2024
Published Applied Microbiology And Biotechnology, 108, 1
Abstract The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/Lh). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste.
PDF https://link.springer.com/content/pdf/10.1007/s00253-024-13217-z.pdf

Similar Articles

ID Score Article
27832 Costa, S; Summa, D; Semeraro, B; Zappaterra, F; Rugiero, I; Tamburini, E Fermentation as a Strategy for Bio-Transforming Waste into Resources: Lactic Acid Production from Agri-Food Residues(2021)Fermentation-Basel, 7.0, 1
8405 Cubas-Cano, E; González-Fernández, C; Ballesteros, M; Tomás-Pejó, E Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate(2018)Biofuels Bioproducts & Biorefining-Biofpr, 12.0, 2
9611 Sayin, B; Kaban, G Biotechnological Innovations Unleashing the Potential of Olive Mill Wastewater in Added-Value Bioproducts(2024)Foods, 13.0, 14
26580 D'ambrosio, S; Zaccariello, L; Sadiq, S; D'Albore, M; Battipaglia, G; D'Agostino, M; Battaglia, D; Schiraldi, C; Cimini, D Grape Stalk Valorization: An Efficient Re-Use of Lignocellulosic Biomass through Hydrolysis and Fermentation to Produce Lactic Acid from Lactobacillus rhamnosus IMC501(2023)Fermentation-Basel, 9, 7
7298 Singh, S; Chaturvedi, S; Syed, N; Rastogi, D; Kumar, P; Sharma, PK; Kumar, D; Sahoo, D; Srivastava, N; Nannaware, AD; Khare, SK; Rout, PK Production of fatty acids from distilled aromatic waste biomass using oleaginous yeast(2024)
32877 Malacara-Becerra, A; Melchor-Martínez, EM; Sosa-Hernández, JE; Riquelme-Jiménez, LM; Mansouri, SS; Iqbal, HMN; Parra-Saldívar, R Bioconversion of Corn Crop Residues: Lactic Acid Production through Simultaneous Saccharification and Fermentation(2022)Sustainability, 14.0, 19
24219 Donzella, S; Fumagalli, A; Arioli, S; Pellegrino, L; D'Incecco, P; Molinari, F; Speranza, G; Ubiali, D; Robescu, MS; Compagno, C Recycling Food Waste and Saving Water: Optimization of the Fermentation Processes from Cheese Whey Permeate to Yeast Oil(2022)Fermentation-Basel, 8, 7
21523 Caporusso, A; Capece, A; De Bari, I Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes(2021)Fermentation-Basel, 7.0, 2
12248 Mladenovic, D; Djukic-Vukovic, A; Stankovic, M; Milasinovic-Seremesic, M; Radosavljevic, M; Pejin, J; Mojovic, L Bioprocessing of agro-industrial residues into lactic acid and probiotic enriched livestock feed(2019)Journal Of The Science Of Food And Agriculture, 99.0, 12
64523 Gazzola, G; Braguglia, CM; Crognale, S; Gallipoli, A; Mininni, G; Piemonte, V; Rossetti, S; Tonanzi, B; Gianico, A Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition(2022)
Scroll