Knowledge Agora



Similar Articles

Title Potential Use of Microbial Fuel Cell Technology in Wastewater Treatment
ID_Doc 17465
Authors Koleva, R; Peeva, G; Yemendzhiev, H; Nenov, V
Title Potential Use of Microbial Fuel Cell Technology in Wastewater Treatment
Year 2022
Published Processes, 10, 3
Abstract Two options, in regard to applying microbial fuel cells (MFCs) in water treatment, are under discussion, namely the conversion of the chemical energy of organic substrates to electricity, as well as the use their potential to reduce different species, such as the ionic form of copper (Cu2+ converted to metal copper) and iron (Fe3+ converted to Fe2+). The high reduction potential of Cu2+ and Fe3+ makes the processes of electricity production and metal reduction, to be performed simultaneously in MFC, achievable. The electrical yield measurement during the experiments of anodic organic matter degradation by MFC in treating an artificial wastewater with chemical oxygen demand (COD) 0.6 and 1.6 g O-2.dm(-3), as initial COD, are given. It is demonstrated that the higher organic load is associated with better electrical yield. A comparison of MFC and conventional anaerobic digestion performance is discussed, as well. Experimental proofs of copper removal and phosphate mobilization, following the iron reduction of FePO4, are also reported.
PDF https://www.mdpi.com/2227-9717/10/3/486/pdf?version=1646044308

Similar Articles

ID Score Article
14709 Sonawane, JM; Mahadevan, R; Pandey, A; Greener, J Recent progress in microbial fuel cells using substrates from diverse sources(2022)Heliyon, 8, 12
9762 Cecconet, D; Molognoni, D; Callegari, A; Capodaglio, AG Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues(2018)International Journal Of Hydrogen Energy, 43.0, 1
19937 Djordjievski, S; Yemendzhiev, H; Koleva, R; Nenov, V; Medic, D; Trifunovic, V; Maksimovic, A Application of microbial fuel cell for simultaneous treatment of metallurgical and municipal wastewater-A laboratory study(2022)Journal Of The Serbian Chemical Society, 87.0, 6
8002 Abubackar, HN; Biryol, I; Ayol, A Yeast industry wastewater treatment with microbial fuel cells: Effect of electrode materials and reactor configurations(2023)International Journal Of Hydrogen Energy, 48, 33
10492 Liu, SH; Lai, CY; Chang, PH; Lin, CW; Chen, YH Enhancing copper recovery and electricity generation from wastewater using low-cost membrane-less microbial fuel cell with a carbonized clay cup as cathode(2020)
5335 Deng, SH; Wang, CQ; Ngo, HH; Guo, WS; You, N; Tang, H; Yu, HB; Tang, L; Han, J Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality(2023)
24544 Kurniawan, TA; Othman, MHD; Liang, X; Ayub, M; Goh, HH; Kusworo, TD; Mohyuddin, A; Chew, KW Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development(2022)Sustainability, 14, 24
12383 Qin, S; Liu, HB; Meng, QC; Zhou, YH; Xu, SY; Lichtfouse, E; Chen, ZB Enhanced nutrient removal from mixed black water by a microbial ultra-low weak electrical stimulated anaerobic-two stage anoxic/aerobic process(2022)
6724 Bhattacharya, A; Neena, M; Chatterjee, P Microbial nutrient recovery cell as an efficient and sustainable nutrient recovery option in sewage treatment(2024)
13932 Mukherjee, A; Zaveri, P; Patel, R; Shah, MT; Munshi, NS Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation(2021)
Scroll