Knowledge Agora



Similar Articles

Title Economical Chemical Recycling of Complex PET Waste in the Form of Active Packaging Material
ID_Doc 17873
Authors Valh, JV; Stopar, D; Berodia, IS; Erjavec, A; Sauperl, O; Zemljic, LF
Title Economical Chemical Recycling of Complex PET Waste in the Form of Active Packaging Material
Year 2022
Published Polymers, 14, 16
Abstract Since millions of tons of packaging material cannot be recycled in conventional ways, most of it ends up in landfills or even dumped into the natural environment. The researched methods of chemical depolymerization therefore open a new perspective for the recycling of various PET materials, which are especially important for packaging. Food preservative packaging materials made from PET plastics are complex, and their wastes are often contaminated, so there are no sophisticated solutions for them in the recycling industry. After integrating the biopolymer chitosan, which is derived from natural chitin, as an active surface additive in PET materials, we discovered that it not only enriches the packaging material as a microbial inhibitor to reduce the bacteria Staphylococcus aureus and Escherichia coli, thus extending the shelf life of the contained food, but also enables economical chemical recycling by alkaline or neutral hydrolysis, which is an environmentally friendly process. Alkaline hydrolysis at a high temperature and pressure completely depolymerizes chitosan-coated PET packaging materials into pure terephthalic acid and charcoal. The products were characterized by Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and elemental analysis. The resulting reusable material represents raw materials in chemical, plastic, textile, and other industries, in addition to the antimicrobial function and recyclability itself.
PDF https://www.mdpi.com/2073-4360/14/16/3244/pdf?version=1661139766

Similar Articles

ID Score Article
15660 Vadalà, R; De Maria, L; De Pasquale, R; Di Salvo, E; Lo Vecchio, G; Di Bella, G; Costa, R; Cicero, N Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage(2024)Foods, 13, 13
16957 Maliki, S; Sharma, G; Kumar, A; Moral-Zamorano, M; Moradi, O; Baselga, J; Stadler, FJ; García-Peñas, A Chitosan as a Tool for Sustainable Development: A Mini Review(2022)Polymers, 14, 7
13029 Merino, D; Bellassi, P; Paul, UC; Morelli, L; Athanassiou, A Assessment of chitosan/pectin-rich vegetable waste composites for the active packaging of dry foods(2023)
10413 Liu, P; Zheng, Y; Yuan, YB; Han, YF; Su, TY; Qi, QS Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation(2023)
20128 Zimmermann, W Biocatalytic recycling of polyethylene terephthalate plastic(2020)Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 378, 2176
25006 Rocha-Pimienta, J; Navajas-Preciado, B; Barraso-Gil, C; Martillanes, S; Delgado-Adámez, J Optimization of the Extraction of Chitosan and Fish Gelatin from Fishery Waste and Their Antimicrobial Potential as Active Biopolymers(2023)Gels, 9, 3
29441 Mudondo, J; Lee, HS; Jeong, Y; Kim, TH; Kim, S; Sung, BH; Park, SH; Park, K; Cha, HG; Yeon, YJ; Kim, HT Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals(2023)Journal Of Microbiology And Biotechnology, 33.0, 1
9699 Kolitha, BS; Jayasekara, SK; Tannenbaum, R; Jasiuk, IM; Jayakody, LN Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing(2023)Journal Of Industrial Microbiology & Biotechnology, 50.0, 1
14519 Ghosal, K; Nayak, C Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions - hope vs. hype(2022)Materials Advances, 3, 4
29107 Weiland, F; Kohlstedt, M; Wittmann, C Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry(2024)
Scroll