Knowledge Agora



Similar Articles

Title Enzyme-Catalyzed Polymerization of Kraft Lignin from Eucalyptus globulus: Comparison of Bacterial and Fungal Laccases Efficacy
ID_Doc 17926
Authors García-Fuentevilla, L; Domínguez, G; Martín-Sampedro, R; Hernández, M; Arias, ME; Santos, JI; Ibarra, D; Eugenio, ME
Title Enzyme-Catalyzed Polymerization of Kraft Lignin from Eucalyptus globulus: Comparison of Bacterial and Fungal Laccases Efficacy
Year 2023
Published Polymers, 15, 3
Abstract Kraft lignin, a side-stream from the pulp and paper industry, can be modified by laccases for the synthesis of high added-value products. This work aims to study different laccase sources, including a bacterial laccase from Streptomyces ipomoeae (SiLA) and a fungal laccase from Myceliophthora thermophila (MtL), for kraft lignin polymerization. To study the influence of some variables in these processes, a central composite design (CCD) with two continuous variables (enzyme concentration and reaction time) and three levels for each variable was used. The prediction of the behavior of the output variables (phenolic content and molecular weight of lignins) were modelled by means of response surface methodology (RSM). Moreover, characterization of lignins was performed by Fourier-transform infrared (FTIR) spectroscopy and different nuclear magnetic resonance (NMR) spectroscopy techniques. In addition, antioxidant activity was also analyzed. Results showed that lignin polymerization (referring to polymerization as lower phenolic content and higher molecular weight) occurred by the action of both laccases. The enzyme concentration was the most influential variable in the lignin polymerization reaction within the range studied for SiLA laccase, while the most influential variable for MtL laccase was the reaction time. FTIR and NMR characterization analysis corroborated lignin polymerization results obtained from the RSM.
PDF https://www.mdpi.com/2073-4360/15/3/513/pdf?version=1674106634

Similar Articles

ID Score Article
19904 Rodríguez-Escribano, D; Pliego-Magán, R; de Salas, F; Aza, P; Gentili, P; Ihalainen, P; Levée, T; Meyer, V; Petit-Conil, M; Tapin-Lingua, S; Lecourt, M; Camarero, S Tailor-made alkaliphilic and thermostable fungal laccases for industrial wood processing(2022)Biotechnology For Biofuels And Bioproducts, 15.0, 1
24043 Cannatelli, MD; Ragauskas, AJ Laccase-mediated synthesis of lignin-core hyperbranched copolymers(2017)Applied Microbiology And Biotechnology, 101, 16
13737 Mayolo-Deloisa, K; González-González, M; Rito-Palomares, M Laccases in Food Industry: Bioprocessing, Potential Industrial and Biotechnological Applications(2020)
8299 Zerva, A; Pentari, C; Topakas, E Crosslinked Enzyme Aggregates (CLEAs) of Laccases from Pleurotus citrinopileatus Induced in Olive Oil Mill Wastewater (OOMW)(2020)Molecules, 25.0, 9
7756 Gupta, A; Tiwari, A; Ghosh, P; Arora, K; Sharma, S Enhanced lignin degradation of paddy straw and pine needle biomass by combinatorial approach of chemical treatment and fungal enzymes for pulp making(2023)
10876 Antunes, F; Mota, IF; Burgal, JD; Pintado, M; Costa, PS A review on the valorization of lignin from sugarcane by-products: From extraction to application(2022)
27517 Pérez-Chávez, AM; Alberti, MM; Albertó, E Evaluation of ligninolytic activity in spent mushroom substrate from four cultivated mushrooms(2022)Journal Of Bioresources And Bioproducts, 7.0, 4
9440 Kontro, J; Lyra, C; Koponen, M; Kuuskeri, J; Kahkonen, MA; Wallenius, J; Wan, X; Sipila, J; Makela, MR; Nousiainen, P; Hilden, K Production of Recombinant Laccase From Coprinopsis cinerea and Its Effect in Mediator Promoted Lignin Oxidation at Neutral pH(2021)
Scroll