Knowledge Agora



Similar Articles

Title Mycelium Agrowaste-Bound Biocomposites as Thermal and Acoustic Insulation Materials in Building Construction
ID_Doc 18766
Authors Bonga, KB; Bertolacci, L; Contardi, M; Paul, UC; Zafar, MS; Mancini, G; Marini, L; Ceseracciu, L; Fragouli, D; Athanassiou, A
Title Mycelium Agrowaste-Bound Biocomposites as Thermal and Acoustic Insulation Materials in Building Construction
Year 2024
Published Macromolecular Materials And Engineering, 309.0, 6
Abstract The predominant use of synthetic materials, such as fiberglass and polymeric foams, for thermal and acoustic insulation in the construction sector contributes to the recalcitrant waste accumulation in the environment and is not economically sustainable in the long term. This is because they are developed with linear economy standards, they are neither reusable nor recyclable, and, at their end of lifecycle, they are not compostable, with a great amount of them finishing in landfills. This work is focused on the development of natural, self-growing mycelium-biocomposites as sustainable alternatives to these conventional synthetic materials. Specifically, fungal mycelium derived from the nonpathogenic fungal strain Pleurotus ostreatus is fed by coffee silverskin flakes, a lignocellulosic agrowaste from roasted coffee seeds, forming 3D biocomposites. The physicochemical properties of the obtained composite are thoroughly investigated, with a final focus on their thermal and acoustic insulation properties. As proved, the natural agrowaste-mycelium composites possess high porosity and thus low density, good thermal properties, and satisfactory sound absorption capability. Such properties combined with the minimal energetic requirements for their growth and their fully compostable end-of-life nature make them valuable alternatives for thermal and acoustic insulation in building construction, among other applications, promoting environmental and economic sustainability. 3D mycelium biocomposites are developed from Pleurotus ostreatus fed with coffee silverskin. They present low thermal conductivity and good sound absorption. Such components require minimal energy for their growth and are fully compostable in the end of their lifespan. They can be used in thermal and acoustic insulation, offering a low-cost, sustainable, and biodegradable alternative to the current commercial systems. image
PDF

Similar Articles

ID Score Article
8935 Girometta, C; Picco, AM; Baiguera, RM; Dondi, D; Babbini, S; Cartabia, M; Pellegrini, M; Savino, E Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review(2019)Sustainability, 11.0, 1
4004 Barta, DG; Simion, I; Tiuc, AE; Vasile, O Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy(2024)Materials, 17, 2
9121 Saglam, SS; Özgünler, SA Production Of Mycelium-Based Composite Materials And Evaluation Of Thermal Insulation Performance(2024)Journal Of Green Building, 19.0, 2
7994 Brudny, K; Lach, M; Kozub, B; Korniejenko, K Development of fungal biocomposites for construction applications(2024)Materialwissenschaft Und Werkstofftechnik, 55, 5
23718 Alemu, D; Tafesse, M; Mondal, AK Mycelium-Based Composite: The Future Sustainable Biomaterial(2022)
12748 Alaux, N; Vasatko, H; Maierhofer, D; Saade, MRM; Stavric, M; Passer, A Environmental potential of fungal insulation: a prospective life cycle assessment of mycelium-based composites(2024)International Journal Of Life Cycle Assessment, 29.0, 2
26663 Nussbaumer, M; van Opdenbosch, D; Engelhardt, M; Briesen, H; Karl, T Material characterization of pressed and unpressed wood-mycelium composites derived from two Trametes species(2023)
14129 Elsacker, E; Vandelook, S; Van Wylick, A; Ruytinx, J; De Laet, L; Peeters, E A comprehensive framework for the production of mycelium-based lignocellulosic composites(2020)
10600 Mohseni, A; Vieira, FR; Pecchia, JA; Guersoy, B Three-Dimensional Printing of Living Mycelium-Based Composites: Material Compositions, Workflows, and Ways to Mitigate Contamination(2023)Biomimetics, 8, 2
8183 Gan, JK; Soh, E; Saeidi, N; Javadian, A; Hebel, DE; Le Ferrand, H Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage(2022)Scientific Reports, 12.0, 1
Scroll